Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials for first optical fibers with high-speed electronic function are developed

06.02.2012
For the first time, a group of chemists, physicists, and engineers has developed crystalline materials that allow an optical fiber to have integrated, high-speed electronic functions.

The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies, improved laser technology, and more-accurate remote-sensing devices.


For the first time, researchers have developed crystalline materials that allow an optical fiber to have integrated, high-speed electronic functions. The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies, improved laser technology, and more-accurate remote-sensing devices. The international team, led by John Badding, a professor of chemistry at Penn State, will publish its findings in the journal Nature Photonics. The team built an optical fiber with a high-speed electronic junction -- the active boundary where all the electronic action takes place -- integrated adjacent to the light-guiding fiber core. Light pulses (white spheres) traveling down the fiber can be converted to electrical signals (square wave) inside the fiber by the junction. The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies and improved laser technology. Credit: John Badding lab, Penn State University

The research was initiated by Rongrui He, a postdoctoral researcher in the Department of Chemistry at Penn State University. The international team, led by John Badding, a professor of chemistry at Penn State, will publish its findings in the journal Nature Photonics.

Badding explained that one of the greatest current technological challenges is exchanging information between optics and electronics rapidly and efficiently. Existing technology has resulted in sometimes-clumsy ways of merging optical fibers with electronic chips -- silicon-based integrated circuits that serve as the building blocks for most semiconductor electronic devices such as solar cells, light-emitting diodes (LEDs), computers, and cell phones. "The optical fiber is usually a passive medium that simply transports light, while the chip is the piece that performs the electrical part of the equation," Badding said.

"For example, light is transmitted from London to New York via fiber-optic cables when two people set up a video call on their computers. But the computer screens and associated electronic devices have to take that light and convert it to an image, which is an electrical process. Light and electricity are working in concert in a process called an OEO conversion, or an optical-electrical-optical conversion." Badding said that, ideally, rather than coupling the optical fiber to the chip, as is routine in existing technology, a "smart fiber" would have the electronic functions already built in.

The integration of optical fibers and chips is difficult for many reasons. First, fibers are round and cylindrical, while chips are flat, so simply shaping the connection between the two is a challenge. Another challenge is the alignment of pieces that are so small. "An optical fiber is 10 times smaller than the width of a human hair. On top of that, there are light-guiding pathways that are built onto chips that are even smaller than the fibers by as much as 100 times," Badding said. "So imagine just trying to line those two devices up. That feat is a big challenge for today's technology."

To address these challenges, the team members took a different approach. Rather than merge a flat chip with a round optical fiber, they found a way to build a new kind of optical fiber with its own integrated electronic component, thereby bypassing the need to integrate fiber-optics onto a chip. To do this, they used high-pressure chemistry techniques to deposit semiconducting materials directly, layer by layer, into tiny holes in optical fibers. "The big breakthrough here is that we don't need the whole chip as part of the finished product. We have managed to build the junction -- the active boundary where all the electronic action takes place -- right into the fiber," said Pier J. A. Sazio of the University of Southampton in the United Kingdom and one of the team's leaders. "Moreover, while conventional chip fabrication requires multimillion-dollar clean-room facilities, our process can be performed with simple equipment that costs much less."

Sazio added that one of the key goals of research in this field is to create a fast, all-fiber network. "If the signal never leaves the fiber, then it is a faster, cheaper, and more efficient technology," said Sazio. "Moving technology off the chip and directly onto the fiber, which is the more-natural place for light, opens up the potential for embedded semiconductors to carry optoelectronic applications to the next level. At present, you still have electrical switching at both ends of the optical fiber. If we can actually generate signals inside a fiber, a whole range of optoelectronic applications becomes possible."

The research also has many potential non-telecommunications applications. "For example, our work also represents a very different approach to fabricating semiconductor junctions that we are investigating for solar-cell applications," said Badding.

In addition to Badding, Sazio, and He, other researchers who contributed to this study include Venkatraman Gopalan of Penn State, and Anna C. Peacock and Noel Healy of the Optoelectronics Research Centre in the United Kingdom.

The research was funded by the U.S. National Science Foundation and the Engineering and Physical Sciences Research Council of the United Kingdom.

[ Katrina Voss ]

CONTACTS

John Badding: 814-777-3054 (mobile), jbadding@pearl.chem.psu.edu
Pier J. A. Sazio: 44-23-8059-3144, pjas@orc.soton.ac.uk
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>