Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative powder revolutionises 3D metal printing

19.06.2019

At TU Graz a steel powder has been developed for additive manufacturing which decisively simplifies the production of complex components. In a spin-off funding programme, work is now being done on market maturity.

Shorter production times, lower costs and fewer production faults. These are just some of the reasons why the metalworking industry is using additive methods more and more frequently. This is also reflected in the market for stainless steel powder used in additive manufacturing.


Mateusz Skalon has developed an innovative powder for 3D metal printing and is now working on its marketability

© IMAT – TU Graz


The quality of the surfaces printed with NewGen SLM Powder (upper row) is many times higher than that of conventional powders

© IMAT – TU Graz

According to estimates, this is increasing by more than 30 per cent per year. Nevertheless, there is still room for expansion in 3D metal printing technology. Especially in selective laser melting (SLM), in which the component is built up in layers, the scope for design is limited with regard to construction and design.

The more complex the component, the more extensive support structures are necessary, for example to prevent possible overhangs from sinking during the printing process or other component deformations.

More design scope and lower printing costs

This is where the work of Mateusz Skalon starts, a researcher at TU Graz’s Institute of Materials Science, Joining and Forming. He has modified the particle surfaces of conventional 316L stainless steel powder so that the liquefied metal has a higher stability in the molten bath.

This allows greater freedom of design since components with small angles of inclination do not collapse during printing. This so-called NewGen SLM powder requires fewer supporting structures, which account for up to 20 percent of total printing costs. Savings in production are considerably reduced, as Skalon has calculated:

“Cost savings of up to 114 euros can be achieved per kilo of powder.” In this context Skalon refers also to the sustainability aspect. Surplus stainless steel powder can be easily recycled at the end of production, which creates additional material savings.

Processing system for innovative metal powder

Now Skalon wants to implement the research results in business with the support of TU Graz. In the framework of the current Spin-Off Fellowship of the Austrian Research Promotion Agency (FFG), he is scaling the modification process to bring it to market maturity. “We’ll be testing the powder on the most common laser melting systems in the next 16 months.

Building on this, we want to establish a production company in Austria directly after the Fellowship where purchased 316L stainless steel powder is modified and sold. Target groups will include manufacturers of highly complex metal parts, manufacturing companies in the automotive, aircraft and mechanical engineering sectors as well as research establishments dealing with additive manufacturing methods.

We have already had expressions of interest from business and industry. Skalon is confident that more will follow in the next few months. With his spin-off, he would like to become an important part of the supply chain in additive manufacturing. The young academic is supported by a top-class team.

Christof Sommitsch, head of TU Graz’s Institute of Materials Science, Joining and Forming (IMAT), has taken on the role of supervisor in the project, and the chairman of Junge Wirtschaft Steiermark, Christoph Kovacic, is a mentor.

Skalon receives help in the business development from the head of TU Graz’s Institute of General Management and Organisation (UFO), Stefan Vorbach, as well as from institute staff Martin Glinik and Elisabeth Poandl.

This research area is anchored in the Field of Expertise “Advanced Materials Science“, one of five strategic foci of TU Graz. It is funded by the Austrian Research Promotion Agency (FFG) in the “Spin-off Fellowship“ funding programme.

Wissenschaftliche Ansprechpartner:

Mateusz SKALON
mgr. Inz. dr.
TU Graz | Institute of Materials Science, Joining and Forming
Tel.: +43 316 873 4305
E-Mail: mateusz.skalon@tugraz.at
imat.tugraz.at

Weitere Informationen:

https://www.ffg.at/en/spin-off-fellowships (Information on the Spin-off Fellowships programme)

https://www.tugraz.at/institutes/imat/home/ (TU Graz | Institute of Materials Science, Joining and Forming)

Mag. Christoph Pelzl, MSc | Technische Universität Graz

More articles from Materials Sciences:

nachricht Tiny quantum sensors watch materials transform under pressure
13.12.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres
13.12.2019 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Uranium chemistry and geological disposal of radioactive waste

New insights using the diamond light

A new paper to be published on 16 December provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Uranium chemistry and geological disposal of radioactive waste

16.12.2019 | Earth Sciences

New CRISPR-based system targets amplified antibiotic-resistant genes

16.12.2019 | Life Sciences

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>