Healing the iPhone’s Wounds

Like the human body, a digital device often suffers a few bruises and scratches within a lifetime. As in medicine, these injuries can be easily detected and repaired (or healed). At other times, however, a digital device may sustain hard-to-pinpoint nanoscale scratches, which can cause the device as a whole to malfunction.

In a paper published today, Jan. 10, in Nature Nanotechnology, a team of researchers from the University of Pittsburgh and the University of Massachusetts Amherst (UMass) propose a “repair-and-go” approach to fixing malfunctions caused by small-surface cracks on any digital device or part before it hits store shelves.

“Anything that’s a machine with a surface is affected by these small-scale cracks,” said Anna Balazs, Distinguished Professor of Chemical and Petroleum Engineering in Pitt’s Swanson School of Engineering and coinvestigator on the project. “These are surfaces that play a role in almost anything, especially functionality.”

The Pitt-UMass research team approach was inspired by the ability of white blood cells in the body to heal wounds on-site. Balazs and Pitt colleagues first came up with a theoretical “repair-and-go” method: A flexible microcapsule filled with a solution of nanoparticles would be applied to a damaged surface; it would then repair defects by releasing nanoparticles into them. Using nanoparticles and droplets of oil stabilized with a polymer surfactant—compounds that lower the surface tension of a liquid—the UMass team actualized the theory, showing that these microcapsules found the cracks and delivered the nanoparticle contents into them. Balazs proposes that manufacturers use this method as a last step in the building process.

“The repair-and-go method can extend the lifetime of any system or device,” she said. “Additionally, it could be used as a repair method after a crack has been found.”

Original research by Balazs and her team was published in ACS Nano and then reported on in Nature Nanotechnology’s “News and Views” section in September 2010. To read more about the healing process of devices, visit www.nature.com/nnano/journal/v5/n4/abs/nnano.2010.66.html.

To read the paper published today, visit www.nature.com/nnano.

Media Contact

B. Rose Huber EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors