Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goals, opportunities, guides for advancing soft tissue and soft materials research

16.04.2020

UMass Amherst scientists and team offer perspectives on cavitation science

A type of damage in soft materials and tissue called cavitation is one of the least-studied phenomena in physics, materials science and biology, say expert observers.


Christopher Barney, left, and Prof. Al Crosby, perform a cavitation experiment in Crosby's materials science lab at UMass Amherst

Credit: UMass Amherst

But strong evidence suggesting that cavitation occurs in the brain during sudden impact leading to traumatic brain injury (TBI) has accelerated interest recently, say materials scientist Alfred Crosby at the University of Massachusetts Amherst and his team.

Crosby is the senior author of a new "Perspectives" paper this week in Proceedings of the National Academy of Sciences. The researchers intend it to spark fresh discussion and drive collaboration among new communities of biologists, chemists, materials scientists, physicists and others to advance knowledge.

They define high-priority goals and point out new opportunities in the field of how matter deforms and flows with cavitation.

Crosby says, "We're breaking down barriers that separate different scientific fields to spur progress in understanding cavitation - how it causes difficult-to-diagnose injuries or unseen failure in soft materials."

He and Ph.D. students Christopher Barney and Carey Dougan, co-first authors of the paper, worked with chemical engineer Shelly Peyton, mechanical engineer Jae-Hwang Lee and polymer scientist Greg Tew at UMass Amherst.

Others on the "CAVITATE" team are chemical engineer Rob Riggleman at the University of Pennsylvania and mechanical engineer Shengqiang Cai at the University of California, San Diego. Support is from a $2.6 million grant from the U.S. Office of Naval Research.

"While the world of cavitation seems to be historically the realm of engineers and physicists, there are growing opportunities for synthetic chemistry to contribute to the field," the authors state. "The chemistry community will significantly aid both the mechanics and biology communities in understanding the physical principles of cavitation as well as using them to advantage in chemical reactions."

Studied mainly in fluids for many years, cavitation is the creation and collapse of bubbles in liquids, Crosby explains. When bubbles collapse they force liquid into a smaller area, causing a pressure wave and increased temperature, which lead to damage.

In a pump, cavitation can erode metal parts over time, for example. Cavitation inside artificial heart valves can damage not only the parts but the blood, he says. Microcavitation in the brain as a result of high-impact blows or being near an explosion are factors in TBI.

Crosby says the team's perspective paper explores how cavitation can be used not only for preventing damage but also how to use cavitation as a unique tool for understanding soft tissues. For example, new methods use cavitation to study how properties like strength evolve in tissues. Co-first author Barney says the researchers hope to spur new research and development in medicine, chemistry, biology, mechanics and to new uses.

Crosby invented a new experimental tool called cavitation rheology for measuring the local mechanical properties of soft matter. He says, "We hope this will lead to advances in medical devices for diagnosing disease, novel devices for protective gear and new sustainable approaches for cleaning materials." 

Co-first author Dougan adds, "While cavitation is often thought of as something to be avoided, we aim to use it to benefit medicine and the development of new treatments." For example, cavitation rheology can be used to measure the strength of interfaces within the brain, which is difficult to achieve with any other method, she notes. Specifically for TBI, the authors outline techniques for biologists to establish cavitation rheology as a tool for characterizing mechanical responses of soft biological tissues.

Media Contact

Janet Lathrop
jlathrop@umass.edu
603-892-0649

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!
Further information:
https://www.umass.edu/newsoffice/article/advancing-study-traumatic-brain-injury-0
http://dx.doi.org/10.1073/pnas.1920168117

More articles from Materials Sciences:

nachricht Shock-dissipating fractal cubes could forge high-tech armor
08.07.2020 | DOE/Los Alamos National Laboratory

nachricht Atomic 'Swiss army knife' precisely measures materials for quantum computers
08.07.2020 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities

08.07.2020 | Physics and Astronomy

Engineers use electricity to clean up toxic water

08.07.2020 | Agricultural and Forestry Science

Atomic 'Swiss army knife' precisely measures materials for quantum computers

08.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>