Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glasses strong as steel: A fast way to find the best

14.04.2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Using traditional methods, it usually takes a full day to identify a single metal alloy appropriate for making BMGs. The new method allows researchers to screen about 3,000 alloys per day and simultaneously ascertain certain properties, such as melting temperature and malleability.

"Instead of fishing with a single hook, we're throwing a big net," said Jan Schroers, senior author of the research, which was published online April 13 in the journal Nature Materials. "This should dramatically hasten the discovery of BMGs and new uses for them."

BMGs are metal alloys composed typically of three or more elements, such as magnesium, copper, and yttrium (Mg-Cu-Y). Certain combinations of elements, when heated and cooled to specific temperatures at specific rates, result in materials with unusual plasticity and strength. They can be used for producing hard, durable, and seamless complex shapes that no other metal processing method can.

Already used in watch components, golf clubs, and other sporting goods, BMGs also have likely applications in biomedical technology, such as implants and stents, mobile phones, and other consumer electronics, said Schroers, who is professor of mechanical engineering and materials science at the Yale School of Engineering & Applied Science.

He said there are an estimated 20 million possible BMG alloys. About 120,000 metallic glasses have been produced and characterized to date.

Using standard methods, it would take about 4,000 years to process all possible combinations, Schroers has calculated. The new method could reduce the time to about four years.

The technique combines a process called parallel blow forming with combinatorial sputtering. Blow forming generates bubble gum-like bubbles from the alloys and indicates their pliability. Co-sputtering is used for fabricating thousands of alloys simultaneously; alloy elements are mixed at various controlled ratios, yielding thousands of millimeter size and micron thick samples.

"Instead of blowing one bubble on one material, we blow-form 3,000 bubbles on 3,000 different materials," Schroers said.

Since 2010, he and his research team have tested about 50,000 alloys using the new method and identified three specific new BMG alloys. They are focused on 10 alloy families.

Ideal BMGs offer plasticity during the manufacturing process, durability, and biocompatibility, along with affordability, Schroers said. Some constituent elements can be costly.

###

The paper is titled "Combinatorial development of bulk metallic glasses."

Shiyan Ding is lead author. Co-authors Yanhui Liu, Yanglin Li, Ze Liu, Sungwoo Sohn, and Fred J. Walker, all of Yale.

The National Science Foundation and the U.S. Department of Energy provided support for the research.

Eric Gershon | Eurek Alert!
Further information:
http://www.yale.edu

Further reports about: BMG Energy bubbles copper gum-like bubbles implants manufacturing process method plasticity specific temperature

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>