Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next generation plastics promises fresher foods and medicines and better protection for surfaces

20.01.2012
High-tech plastics for better food and medicine packaging as well as more durable paints and varnishes will be developed by a new Industrial Coating and Packaging (ICAP) consortium, helmed by the Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR).

Food that stays fresher for longer and varnishes that keep furniture looking new is the goal of new plastic technologies to be developed by a consortium set up by A*STAR’s IMRE and its industry partners. In its first industry-themed project, the new ICAP consortium will develop transparent plastics that better protect foods and medicines from oxidation and keep them fresher for longer by blocking oxygen, moisture and UV rays.

“Plastics make up about 40% of most packaging materials with the market set to grow at a faster rate than any other packaging material used today. However, current plastic packaging has its limitations as it allows diffusion of oxygen, moisture and UV light compared to materials like aluminium or tin. This oxidises and degrades perishables like food and pharmaceuticals”, says Dr Li Xu, the IMRE senior scientist who is leading the first ICAP project. “The ICAP team will be using IMRE’s advanced capabilities to develop new technologies to overcome these limitations. The plastics we develop should also require less energy to produce and allow consumers to see the actual perishable products compared to today’s opaque aluminium-plastic packaging materials. The same technology may also be used to make paints and varnishes that protect surfaces with air-tight coatings and block oxidising UV and near infrared rays”, adds Dr Li. The technology can also be adapted to make transparent surface coatings with improved hardness, UV blocking and oxidation-resistant for use in paints and varnishes.

"Today, consumers want everything cheap and good; this translates to research demands. We need a new generation of food packaging that go beyond their usual functions. For example, packaging that helps food stay fresh and last longer, or with a built-in security feature that deters tampering or even one that lights up when food turns sour!”, says Prof Andy Hor, IMRE’s Executive Director. “The secret may lie in IMRE’s novel layer-by-layer technology of stacking of modified clay sheets. ICAP members will have access to that”, adds Prof Hor.

ICAP was conceived in response to the needs of packaging and coating manufacturers who were seeing an increasing demand for high-performance, customised packaging and coatings for critical components and equipment, consumer care, automotive, aerospace, oil and gas industries. Through such a partnership, new and innovative technologies like IMRE’s packaging and coating can be placed directly into the hands of relevant companies thus shortening the time-to-market of new products. The consortium currently comprises core member companies including Nestle R&D Center (Pte) Ltd, Daibochi Plastic And Packaging Industry Berhad, Texplore Co., Ltd. (subsidiary company of SCG Chemicals Co., Ltd), Nipo International Pte Ltd and Piaget Chemicals & Manufacturing Pte Ltd.

“We are very impressed with the tech-level of the research and we are excited about the prospects of the application of this technology. We are confident that this technology can grow our business in modified clay additives and create endless possibilities for new materials”, said Mr Chua Leng Keong, Managing Director of Piaget Chemicals & Manufacturing Pte Ltd.

“The modified-clay technology that IMRE is developing can potentially enhance the heat insulation and UV protection when applied to building surfaces”, said Ms Amanda Khoo, Director of Nipo International Pte Ltd.

“We will now have greater options for using easily processable, flexible, transparent and resource-friendly plastics compared to the conventional aluminium and metal-based films in keeping food fresher for longer”, said Mr Thomas Lim, Managing Director of Daibochi Plastic And Packaging Industry Berhad.

Companies have shown great interest and support for this initiative as the ICAP consortium will serve as a platform that enables companies to reduce R&D risks and investments in new coating and packaging technologies by pooling R&D resources in joint projects.
"This consortium presents an opportunity to interface with highly skilled technical and commercial professionals to produce a great platform for new products and applications", commented Dr Suracha Udomsak, Managing Director of Texplore Co., Ltd.

The ICAP project for the new plastics will span one and a half years. Some of ICAP’s future projects may include coatings that are highly precise and uniform to fit any shape; abrasion and scratch-resistant hard coatings; heat shielding and sound attenuation coatings; and coatings for deep sea environments. The ICAP consortium will be launched on IMRE’s Industry Day, held on 18 Jan 2012, which is an event that recognises IMRE’s industry partners and the success of various industry R&D joint projects over the past year.
For media enquiries, please contact:

Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg

For enquiries on ICAP, please contact:

Mr Rick Ong
Industry Development Manager
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 65131198
Email ongr@imre.a-star.edu.sg
A*STAR Corporate Profiles

About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.
About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners. For more information about A*STAR, please visit www.a-star.edu.sg

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>