Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future Flexible Electronics Based on Carbon Nanotubes

24.09.2014

Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers

Researchers from the University of Texas at Austin and Northwestern University have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes (CNT), a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices. The result appears in a new paper published in the journal Applied Physics Letters, from AIP Publishing.


S. Jang and A. Dodabalapur/University of Texas at Austin

Optical images of individual SWCNT field-effect transistors

In the paper, researchers examined the effect of a fluoropolymer coating called PVDF-TrFE on single-walled carbon nanotube (SWCNT) transistors and ring oscillator circuits, and demonstrated that these coatings can substantially improve the performance of single-walled carbon nanotube devices. PVDF-TrFE is also known by its long chemical name polyvinyledenedifluoride-tetrafluoroethylene.

“We attribute the improvements to the polar nature of PVDF-TrFE that mitigates the negative effect of impurities and defects on the performance of semiconductor single-walled carbon nanotubes,” said Ananth Dodabalapur, a professor in the Cockrell School of Engineering at UT Austin who led the research. “The use of [PVDF-TrFE] capping layers will be greatly beneficial to the adoption of single-walled carbon nanotube circuits in printed electronics and flexible display applications.”

The work was done in collaboration between Dodabalapur’s group at UT Austin and Mark Hersam’s group at Northwestern University as part of a Multi-University Research Initiative (MURI) supported by the Office of Naval Research.

A potential successor to silicon chips

Single-walled carbon nanotubes (SWCNT) are just about the thinnest tubes that can be wrought from nature. They are cylinders formed by rolling up a material known as graphene, which is a flat, single-atom-thick layer of carbon graphite. Most single-walled carbon nanotubes typically have a diameter close to 1 nanometer and can be twisted, flattened and bent into small circles or around sharp bends without breaking. These ultra-thin carbon filaments have high mobility, high transparency and electric conductivity, making them ideal for performing electronic tasks and making flexible electronic devices like thin film transistors, the on-off switches at the heart of digital electronic systems.

“Single-walled carbon nanotube field-effect transistors (FETs) have characteristics similar to polycrystalline silicon FETs, a thin film silicon transistor currently used to drive the pixels in organic light-emitting (OLED) displays,” said Mark Hersam, Dodabalapur’s coworker and a professor in the McCormick School of Engineering and Applied Science at Northwestern University. “But single-walled carbon nanotubes are more advantageous than polycrystalline silicon in that they are solution-processable or printable, which potentially could lower manufacturing costs.”

The mechanical flexibility of single-walled carbon nanotubes also should allow them to be incorporated into emerging applications such as flexible electronics and wearable electronics, he said.

For years, scientists have been experimenting with carbon nanotube devices as a successor to silicon devices, as silicon could soon meet its physical limit in delivering increasingly smaller, faster and cheaper electronic devices. Although circuits made with single-walled carbon nanotube are expected to be more energy-efficient than silicon ones in future, their drawbacks in field-effect transistors, such as high power dissipation and less stability, currently limit their applications in printed electronics, according to Dodabalapur.

A new technique to improve the performance of SWCNTs devices

To overcome the drawbacks of single-walled carbon nanotube field-effect transistors and improve their performance, the researchers deposited PVDF-TrFE on the top of self-fabricated single-walled carbon nanotube transistors by inkjet printing, a low-cost, solution based deposition process with good spatial resolution. The fluoropolymer coated film was then annealed or heated in air at 140 degrees Celsius for three minutes. Later, researchers observed the differences of device characteristics.

“We found substantial performance improvements with the fluoropolymer coated single-walled carbon nanotube both in device level and circuit level,” Dodabalapur noted.

On the device level, significant decreases occur in key parameters such as off-current magnitude, degree of hysteresis, variation in threshold voltage and bias stress degradation, which, Dodabalapur said, means a type of more energy-efficient, stable and uniform transistors with longer life time.

On the circuit level, since a transistor is the most basic component in digital circuits, the improved uniformity in device characteristics, plus the beneficial effects from individual transistors eventually result in improved performance of a five-stage complementary ring oscillator circuit, one of the simplest digital circuits.

“The oscillation frequency and amplitude [of the single-walled carbon nanotube ring oscillator circuit] has increased by 42 percent and 250 percent respectively,” said Dodabalapur. The parameters indicate a faster and better performing circuit with possibly reduced power consumption.

Dodabalapur and his coworkers attributed the improvements to the polar nature of PVDF-TrFE.

“Before single-walled carbon nanotube field-effect transistors were fabricated by inkjet printing, they were dispersed in an organic solvent to make a printable ink. After the fabrication process, there could be residual chemicals left [on the device], causing background impurity concentration,” Dodabalapur explained. “These impurities can act as charged defects that trap charge carriers in semiconductors and reduce carriers’ mobility, which eventually could deteriorate the performance of transistors.”

PVDF-TrFE is a polar molecule whose negative and positive charges are separated on different ends of the molecule, Dodabalapur said. The two charged ends form an electric bond, or dipole, in between. After the annealing process, the dipoles in PVDF-TrFE molecules uniformly adopt a stable orientation that tends to cancel the effects of the charged impurities in single-walled carbon nanotube field-effect transistors, which facilitated carrier flow in the semiconductor and improved device performance.

To confirm their hypothesis, Dodabalapur and his coworkers performed experiments comparing the effects of polar and non-polar vapors on single-walled carbon nanotube field-effect transistors. The results support their assumption.

The next step, Dodabalapur said, is to implement more complex circuits with single-walled carbon nanotube field-effect transistors.

The article, "Fluoropolymer coatings for improved carbon nanotube transistors device and circuit performance" is authored by Seonpil Jang, Bongjun Kim, Michael L. Geier, Pradyumna L. Prabhumirashi, Mark C. Hersam and Ananth Dodabalapur. It appears in the journal Applied Physics Letters on September 23, 2014 (DOI: 10.1063/1.4895069). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/105/12/10.1063/1.4895069

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Contact Information

Jason Socrates Bardi
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>