Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FAU researchers investigate how light behaves in curved space

18.01.2016

To investigate the influence of gravity on the propagation of light, researchers usually have to examine astronomical length scales and huge masses. However, physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Friedrich Schiller University Jena have shown that there is another way. In a recent issue of the journal Nature Photonics they find the answers to astronomical questions in the laboratory, shifting the focus to a previously underappreciated material property - surface curvature.*

According to Einstein's general theory of relativity, gravity can be described as the curvature of four-dimensional spacetime. In this curved space, celestial bodies and light move along geodesics, the shortest paths between two points, which often look anything but straight when viewed from the outside.


In this image, a laser beam in an experiment propagates along the two-dimensional surface of a glass object shaped like an hourglass, curling once around the middle of the object. This is an example of an object with negative surface curvature (like a saddle, for example), in contrast to an object with positive surface curvature, such as a sphere.

Credit: Vincent Schultheiß

The team of researchers led by Prof. Dr. Ulf Peschel from Friedrich Schiller University Jena used a special trick to examine the propagation of light in such curved spaces in the laboratory. Instead of changing all four dimensions of spacetime, they reduced the problem to two dimensions and studied the propagation of light along curved surfaces. However, not all curved surfaces are the same.

'For example, while you can easily unfold a cylinder or a cone into a flat sheet of paper, it is impossible to lay the surface of a sphere out flat on a table without tearing or at least distorting it,' says Vincent Schultheiß, a doctoral candidate at FAU and lead author of the study. 'A well known example of this is world maps that always show the surface in a distorted way. The curvature of the surface of a sphere is an intrinsic property that can't be changed and has an effect on geometry and physics inside this two-dimensional surface.'

The researchers examined the effects of this intrinsic curvature of space on the propagation of light in their experiment. To do so they captured light in a small area close to the surface of a specially made object and forced it to follow the course of the surface. As the light propagated it behaved in the same way that it does when deflected by huge masses.

By changing the curvature of the surface it is possible to control the propagation of light. Conversely, it is also possible to learn about the curvature of a surface itself by analysing the propagation of light. When transferred to astronomical observations, this means that light that reaches us from far away stars carries valuable information about the space that it has travelled through.

In their work the researchers studied intensity interferometry, pioneered by the English physicists Robert Hanbury Brown and Richard Twiss, which is used to determine the size of stars that are close to the sun. In this measurement technique, two telescopes are set up some distance apart and focused on the star that is to be examined.

The fluctuations in light intensity measured by the two telescopes are then compared. Fluctuations in intensity are a result of the interference of light emitted separately from the surface of the star - visible as a pattern of light dots in the images produced - and allow conclusions to be drawn about the size of the object that is observed.

As paths of light in curved space tend to converge or diverge much more frequently than in flat space, the size of the dots changes depending on the curvature. The researchers were able to show that knowing the curvature is crucial for interpreting results and that experiments that use interferometry are suitable for measuring the general curvature of the universe more exactly.

Whether the results of their research will lead to a better understanding of the universe is still written in the stars. 'The main goal of our research is to transfer findings based on the general theory of relativity to materials science by carefully modelling the surfaces of objects,' Professor Peschel says. Although these two fields seem rather unrelated at first glance, there are some important connections.

'From a manufacturing point of view, flat designs are often much easier to achieve. However, curved surfaces have a potential that has not yet been exploited and could be used to control light paths in optical systems, for example. Creating local variations in the surface curvature can often have the same effect as changing the volume material itself. This could allow the number of steps required and materials used when manufacturing integrated optical circuits or micro-optic components to be reduced.'

###

The study was carried out at FAU's Cluster of Excellence 'Engineering of Advanced Materials' (EAM) where researchers from a wide range of subjects are working on developing new materials.

Media Contact

Vincent Schultheiß
vincent.schultheiss@fau.de
49-913-185-20343

http://www.uni-erlangen.de 

Vincent Schultheiß | EurekAlert!

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>