Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Empa researchers «design» therapeutic coatings of silver

05.07.2010
Empa researchers have demonstrated how they can adjust process conditions to influence the properties of novel plasma polymer coatings containing silver nanoparticles. Tailor-made films can be generated through a one-step plasma process.
The scientists developed these new coatings, which kill bacteria while having no negative effect on human tissue, in the frame of an EU project.

Silver ions are very efficient at killing bacteria, and in contrast to antibiotic drugs they are effective against hundreds of different bacterial strains thanks to different attacking mechanisms.

This makes silver ideal as an antibacterial additive for, e.g., implants and wound dressings. The idea that “a little is good, more is better” cannot be adopted to silver in every case, since higher ion concentrations might also damage human cells and tissues. Therefore, surface coatings need to be made with a therapeutically useful range of silver.

One possible solution is offered by the novel nanostructured polymers with integrated silver nanoparticles which a team of Empa scientists led by Enrico Körner and Dirk Hegemann are developing within the frame of an EU Project called EMBEK1 (“polymer-based, multifunctional, bactericidal materials”). In the context of this research work they investigate how varying plasma conditions during deposition influence the film structure and the associated silver ion release that determines the antibacterial effectiveness. The researchers have determined the basics for “designing” tailor-made coatings with desirable properties. The results of this work have recently been published in the scientific journal “Plasma Processes and Polymers”.

Silver nanoparticles are firmly incorporated in the plasma layer

The Empa team used a so-called RF Plasma Reactor, in which hydrocarbon coatings can be deposited on different substrates. As raw materials a hydrocarbon gas such as ethylene (C2H4) is mixed with a reactive gas such as carbon dioxide (CO2) in order to obtain a cross-linked plasma polymer matrix containing functional groups required for cell growth. The electrical energy necessary to drive this process is supplied by electrodes. In order to incorporate silver particles firmly in the plasma layer, one of the electrodes is made of pure silver where a high voltage has to be applied for sputtering conditions. Nevertheless, the film deposition occurs near room temperature allowing the treatment of temperature-sensitive materials.

The Empa scientists varied different process parameters such as the ratio of the two gases and the power input. They discovered that raising the ratio of CO2 to C2H4 leads to an increase of the incorporated amount of silver in the coating as well as to smaller, more homogenously distributed particles. Nanometer-sized, well-distributed silver particles have a significantly higher surface area than, for example, a pure silver layer. Increasing the input power also results in a higher incorporation of silver and at the same time increases the size of the incorporated silver particles. Finally, the researchers investigated the quantities of released silver ions of various coatings over different time periods. The obtained data were evaluated in context of the antibacterial and cell test results. A range could thus be determined for the silver nanocomposite coatings within they showed antibacterial properties and were yet found to be cytocompatible (i.e. friendly to cells).

These results can be used to transfer the deposition process from the laboratory scale to Empa’s in-house pilot plant, the first step towards industrial production of the tailor-made antibacterial coatings. In addition, the research team is attempting to create coatings with gradients in the silver concentration enabling the controlled release of silver ions over a certain time period. A polymer covering layer would thereby help human cells to grow optimally on the antibacterial coating.

Literature
“Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties”, E. Koerner, M. Aguirre, A. Ritter, G. Fortunato, J. Ruehe, D. Hegemann, Plasma Processes and Polymers, published online: 22 June 2010 (DOI: 10.1002/ppap.200900163)
Project data
This work was performed within the frame of the EU project Embek1 “Development and analysis of polymer based multifunctional bactericidal materials”; grant #211436 of the 7th framework program, coordinated by Max Planck Institute for Polymer Research Mainz.

Beatrice Huber | idw
Further information:
http://www.empa.ch
http://www3.interscience.wiley.com/journal/123548666/abstract

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>