Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019

Machine learning (ML) has found wide application in materials science. It is believed that a model developed by ML could depict the common trend of the data and therefore reflect the relationship between structure and property, which can be applied to most of the compounds. So, by training ML models with existed databases, important properties of compounds can be predicted ahead of time-consuming experiments or calculations, which will greatly speed up the process of new materials design.

While tremendously useful, these models do not directly show the rules and physics underlying the relationship between structure and property. And despite of their decent overall performance, there will always be some exceptions where ML models fail to give accurate predictions. Very often, it is these exceptions that shed some new insights about the underlying physics, and open up new frontiers in science.


The machine learning results. (a) The scatter plot, and (b) the histogram of errors and the kernel density estimation of the probability density function. Red points and regions correspond to structures with prediction error larger than 2 eV.

Credit: ©Science China Press


Comparison between electronic structure of AgO2F and KAgO2. (a) DOS plot of AgO2F, (b) illustration for the band structure of AgO2F, (c) DOS plot of KAgO2, (d) illustration for the band structure of KAgO2.

Credit: ©Science China Press

A research group led by Prof. Feng Pan, the founding dean of the School of Advanced Materials, Peking University Shenzhen Graduate School, has recently shown that these models are valuable not only when they succeed in predicting properties accurately, but also when they fail.

In their work, a model is built to predict the HSE band gaps of compounds according to their atomic structures only, based on a high-throughput calculation database constructed by the school themselves.

The R2 of the model is 0.89, comparable with similar works. They then filtered out those structures with prediction error larger than 2 eV and examined them carefully.

Many structures with unusual structure units, or showing other abnormities with similar compounds, like relatively large band gaps or being in different phases. Among these unusual structures, AgO2F raises great interest and a detailed analysis is given.

It is found that Ag3+ and O22- coexist in this compound, and while Ag ions are in square planar coordination, there is little hybridization between orbitals of Ag and O. States near the band edges are mainly contributed by O-2p orbitals and the band gap is much smaller than other compounds with Ag3+ ions.

This offers a new example for anionic redox property, a hot topic in the investigation of Li-excess electrode materials. These results demonstrate how unusual structures can be discovered from exceptions in machine learning, which can help us to investigate new physics and novel structural units from existing databases.

###

Wang is supported by the Director, Office of Science (SC), Basic Energy Science (BES), Materials Science and Engineering Division (MSED), of the US Department of Energy (DOE) under Contract No.DE-AC02-05CH11231 through the Materials Theory program (KC2301). This work is also financially supported by National Key R&D Program of China (2016YFB0700600), Shenzhen Science and Technology Research Grant (ZDSYS201707281026184), and Guangdong Key-lab Project (2017B0303010130).

See the article:

Jianshu Jie, Zongxiang Hu, Guoyu Qian, Mouyi Weng, Shunning Li, Shucheng Li, Mingyu Hu, Dong Chen, Weiji Xiao, Jiaxin Zheng, Lin-Wang Wang and Feng Pan. Discovering unusual structures from exception using big data and machine learning techniques. Science Bulletin, 2019, 64(9)612-616; doi: 10.1016/j.scib.2019.04.015

https://www.sciencedirect.com/science/article/pii/S2095927319302014

Feng Pan | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2019.04.015

More articles from Materials Sciences:

nachricht Turning up the heat to create new nanostructured metals
21.11.2019 | DOE/Brookhaven National Laboratory

nachricht Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes
20.11.2019 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>