Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019

Machine learning (ML) has found wide application in materials science. It is believed that a model developed by ML could depict the common trend of the data and therefore reflect the relationship between structure and property, which can be applied to most of the compounds. So, by training ML models with existed databases, important properties of compounds can be predicted ahead of time-consuming experiments or calculations, which will greatly speed up the process of new materials design.

While tremendously useful, these models do not directly show the rules and physics underlying the relationship between structure and property. And despite of their decent overall performance, there will always be some exceptions where ML models fail to give accurate predictions. Very often, it is these exceptions that shed some new insights about the underlying physics, and open up new frontiers in science.


The machine learning results. (a) The scatter plot, and (b) the histogram of errors and the kernel density estimation of the probability density function. Red points and regions correspond to structures with prediction error larger than 2 eV.

Credit: ©Science China Press


Comparison between electronic structure of AgO2F and KAgO2. (a) DOS plot of AgO2F, (b) illustration for the band structure of AgO2F, (c) DOS plot of KAgO2, (d) illustration for the band structure of KAgO2.

Credit: ©Science China Press

A research group led by Prof. Feng Pan, the founding dean of the School of Advanced Materials, Peking University Shenzhen Graduate School, has recently shown that these models are valuable not only when they succeed in predicting properties accurately, but also when they fail.

In their work, a model is built to predict the HSE band gaps of compounds according to their atomic structures only, based on a high-throughput calculation database constructed by the school themselves.

The R2 of the model is 0.89, comparable with similar works. They then filtered out those structures with prediction error larger than 2 eV and examined them carefully.

Many structures with unusual structure units, or showing other abnormities with similar compounds, like relatively large band gaps or being in different phases. Among these unusual structures, AgO2F raises great interest and a detailed analysis is given.

It is found that Ag3+ and O22- coexist in this compound, and while Ag ions are in square planar coordination, there is little hybridization between orbitals of Ag and O. States near the band edges are mainly contributed by O-2p orbitals and the band gap is much smaller than other compounds with Ag3+ ions.

This offers a new example for anionic redox property, a hot topic in the investigation of Li-excess electrode materials. These results demonstrate how unusual structures can be discovered from exceptions in machine learning, which can help us to investigate new physics and novel structural units from existing databases.

###

Wang is supported by the Director, Office of Science (SC), Basic Energy Science (BES), Materials Science and Engineering Division (MSED), of the US Department of Energy (DOE) under Contract No.DE-AC02-05CH11231 through the Materials Theory program (KC2301). This work is also financially supported by National Key R&D Program of China (2016YFB0700600), Shenzhen Science and Technology Research Grant (ZDSYS201707281026184), and Guangdong Key-lab Project (2017B0303010130).

See the article:

Jianshu Jie, Zongxiang Hu, Guoyu Qian, Mouyi Weng, Shunning Li, Shucheng Li, Mingyu Hu, Dong Chen, Weiji Xiao, Jiaxin Zheng, Lin-Wang Wang and Feng Pan. Discovering unusual structures from exception using big data and machine learning techniques. Science Bulletin, 2019, 64(9)612-616; doi: 10.1016/j.scib.2019.04.015

https://www.sciencedirect.com/science/article/pii/S2095927319302014

Feng Pan | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.scib.2019.04.015

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>