Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dielectric metamaterial is dynamically tuned by light

02.05.2018

Metal-free metamaterial can be swiftly tuned to create changing electromagnetic effects

Researchers at Duke University have built the first metal-free, dynamically tunable metamaterial for controlling electromagnetic waves. The approach could form the basis for technologies ranging from improved security scanners to new types of visual displays.


Artistic representation of the new metasurface technology. Rays of light (red) bombard the silicon cylinders, changing their electromagnetic properties to precisely tune how they interact with electromagnetic waves.

Credit: Kebin Fan, Duke University

The results appear on April 9 in the journal Advanced Materials.

A metamaterial is an artificial material that manipulates waves like light and sound through properties of its structure rather than its chemistry. Researchers can design these materials to have rare or unnatural properties, like the ability to absorb specific ranges of the electromagnetic spectrum or to bend light backward.

"These materials are made up of a grid of separate units that can be individually tuned," said Willie Padilla, professor of electrical and computer engineering at Duke. "As a wave passes through the surface, the metamaterial can control the amplitude and phase at each location in the grid, which allows us to manipulate the wave in a lot of different ways."

In the new technology, each grid location contains a tiny silicon cylinder just 50 microns tall and 120 microns wide, with the cylinders spaced 170 microns apart from one another. While silicon is not normally a conductive material, the researchers bombard the cylinders with a specific frequency of light in a process called photodoping. This imbues the typically insulating material with metallic properties by exciting electrons on the cylinders' surfaces.

These newly freed electrons cause the cylinders to interact with electromagnetic waves passing through them. The size of the cylinders dictates what frequencies of light they can interact with, while the angle of the photodoping affects how they manipulate the electromagnetic waves. By purposefully engineering these details, the metamaterial can control electromagnetic waves in many different ways.

For this study, the cylinders were sized to interact with terahertz waves -- a band of the electromagnetic spectrum that sits between microwaves and infrared light. Controlling this wavelength of light could improve broadband communications between satellites or lead to security technology that can easily scan through clothing.

The approach could also be adapted to other bands of the electromagnetic spectrum -- like infrared or visible light -- simply by scaling the size of the cylinders.

"We're demonstrating a new field where we can dynamically control each point of the metasurface by adjusting how they are being photodoped," Padilla said. "We can create any type of pattern we want to, allowing us to create lenses or beam-steering devices, for example. And because they're controlled by light beams, they can change very fast with very little power."

While existing metamaterials control electromagnetic waves through their electric properties, the new technology can also manipulate them through their magnetic properties.

"This allows each cylinder to not only influence the incoming wave, but the interaction between neighboring cylinders," said Kebin Fan, a research scientist in Padilla's laboratory and first author of the paper. "This gives the metamaterial much more versatility, such as the ability to control waves traveling across the surface of the metamaterial rather than through it."

"We're more interested in the basic demonstration of the physics behind this technology, but it does have a few salient features that make it attractive for devices," Padilla said.

"Because it is not made of metal, it won't melt, which can be a problem for some applications," he said. "It has subwavelength control, which gives you more freedom and versatility. It is also possible to reconfigure how the metamaterial affects incoming waves extremely quickly, which has our group planning to explore using it for dynamic holography."

###

Learn more about metamaterials at https://stories.duke.edu/beyond-materials-from-invisibility-cloaks-to-satellite-communications

This research was supported by the Department of Energy (DE-SC0014372) and the Army Research Office (ARO W911NF-16-1-0361).

CITATION: "Photo-Tunable Dielectric Huygens' Metasurfaces," Kebin Fan, Jingdi Zhang, Xinyu Liu, Gufeng Zhang, Richard D. Averitt, and Willie J. Padilla. Advanced Materials, April 9, 2018. DOI: 10.1002/adma.201800278

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>