Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of “Slater Insulator” that Rapidly Changes from Conductor to Insulator at Room Temperature

11.07.2012
Dr. Kazunari Yamaura, a Principal Researcher of the NIMS Strongly Correlated Materials Group, Superconducting Properties Unit, in joint work with a research group at the Oak Ridge National Laboratory (United States), has succeeded in developing a Slater insulator which functions at room temperature.
Dr. Kazunari Yamaura, a Principal Researcher of the Strongly Correlated Materials Group, Superconducting Properties Unit, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), in joint work with a research group at the Oak Ridge National Laboratory in the United States, succeeded in development of a Slater insulator which functions at room temperature.

Slater insulators have been studied for more than 50 years as insulators with special properties. Although Slater insulators display the properties of metals at a sufficiently high temperature, they become insulators when cooled to a certain temperature (transition temperature) peculiar to the substance concerned. Because this transition temperature was conventionally far lower than room temperature, study had been limited to scientific research, and virtually no research had been done aiming at development to applications.

This research clarified the fact that a new material (Perovskite type osmium oxide), which was synthesized for the first time by NIMS in 2009, is the Slater insulator with the highest transition temperature to date. This result was verified through joint experimental research with a research group at the Oak Ridge National Laboratory in the United States using the neutron diffraction method.

Because this new material displays the characteristics of a Slater insulator at room temperature without requiring cooling, it is not only scientifically interesting, but also has the potential for development to application as a new material. If further progress can be achieved in research with this new material as a starting point, there is a possibility that new materials and devices with unprecedented functions can be developed. Concretely, application to solid state devices for detecting signals in the terahertz region, new thermoelectric conversion materials, etc. is considered possible. In the future, research will be carried out aiming at development of new materials with possible practical applications.

This result was obtained as part of “Research on Energy Conversion Functions of Slater Materials” (Research representative: Kazunari Yamaura) under the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST). This achievement is to be published in a journal of the American Physical Society, Physical Review Letters (online version).

(Left) Photograph of a crystal of Perovskite type osmium oxide and (right) schematic diagram of its crystal structure. White circles: sodium ions, red circles: oxygen ions. Osmium ions exist in the central part of the octahedron. ©NIMS

For further details:

Principal Researcher, Superconducting Properties Unit
Kazunari Yamaura
TEL: +81-29-860-4658
FAX: +81-29-860-4674
E-Mail: YAMAURA.Kazunari=nims.go.jp
(Please change "=" to "@")

For general information:

NIMS Public Relations Office
TEL: +81-29-859-2026
FAX: +81-29-859-2017
E-Mail: pr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>