Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting material defects in ship propellers

02.04.2012
Ship propellers are as large as a single-family home – and manufacturing them is quite a challenge.

During the casting process, pores and miniscule cracks can form that in the worst case may cause a blade to break. Now these massive components can be inspected for defects in a non-invasive manner, using a new kind of ultrasound process.


Suction feet are used to attach the mobile scanner to the propeller. Researchers record the ultrasound test data on-site. © Fraunhofer ITWM

They can weigh up to 150 tons, and it’s not uncommon for them to measure nine meters or more in diameter: the ship propellers on huge tankers, container ships and cruise liners are invisible giants. Damage to these massive propellers could render a ship unmaneuverable – with unpredictable consequences for people and the environment. Many defects do not come from external influences, but instead originate in the production or repair process.

For example, when the molded parts are being cast, any turbulence could lead to sand inclusions and pores. Left undetected, critical imperfections could lead to breakage of a blade.

Until now, propellers have been inspected manually for inner defects when necessary. To make them visible, the inspector guides an ultrasound test probe over the component by hand – an error-prone procedure that fails to capture the entire volume of the component. This method cannot detect cracks inside the propeller in certain circumstances.

To identify defects in a timely manner, researchers at the Fraunhofer Institute for Industrial Mathematics ITWM developed a mechanized ultrasound process that can be used for the non-destructive testing of complex components. The scientists received support from the GL Group (Germanischer Lloyd) and propeller manufacturer Wärtsilä Propulsion Netherlands.

Mobile scanner can be positioned freely

“With our mobile ultrasound test system, we can inspect copper-nickel-aluminum bronzes up to 450 millimeters thick and detect fissures down to a few millimeters in length. Because we emit the ultrasound at defined angles, we also find defects positioned at an angle to the surface”, says Dr. Martin Spies of ITWM in Kaiserslautern. The system is capable of recording large volumes of digitized ultrasound test data, taking into account the many and variously intense curvatures of the propeller surface.

The device currently scans test grids of 700 by 400 millimeters, achieving a rate of up to 100 millimeters per second. The mobile scanner can be positioned anywhere on the propeller, and, thanks to its suction feet, it can be attached in a horizontal as well as vertical test position. “We obtained the 3D data about the inside of the component by an imaging procedure known as SAFT. It provides a detailed display of inclusions and welding-seam defects. It basically works like computer tomography in medicine,” explains Spies.

With the aid of special computational processes and algorithms, the experts have succeeded in reducing interference signals and intensifying error signals – a complicated task, since the various areas of the blade do not have a homogenously coarse grain. This can weaken the echo substantially. The specialists also use simulations to calculate in advance which ultrasound test probe they have to deploy.

The researchers use the mobile scan system for their on-site testing at foundries, at propeller manufacturers, on deck and in dry dock, and are currently improving scan times and 3D defect imaging. Only recently, they were able to put the efficiency of their procedure to the test at the world‘s largest shipbuilder in Korea. “The customer wanted to document the quality of its propellers, to gain an edge over the competition,” says Spies.

“With our procedure, we can test not only propellers but also other complex components made of materials that are difficult to test, like offshore components made of duplex steels,” he stressed. ITWM researchers Alexander Dillhöfer, Hans Rieder and Dr. Martin Spies recently received the Innovation Award from the Deutsches Kupferinstitut for their outstanding accomplishments with copper and its alloys.

Franz Miller | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/detecting-material-defects-in-ship-propellers.html

More articles from Materials Sciences:

nachricht Joined nano-triangles pave the way to magnetic carbon materials
02.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table
29.05.2020 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Selectively Reactivating Nerve Cells to Retrieve a Memory

02.06.2020 | Life Sciences

New experiment design improves reproducibility

02.06.2020 | Life Sciences

CeMM study reveals how a master regulator of gene transcription operates

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>