Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental fillings without gaps

08.09.2008
Tooth cavities are usually closed with plastic fillings. However, the initially soft plastic shrinks as it hardens.

The tension can cause gaps to appear between the tooth and the filling, encouraging more caries to form. For the first time, researchers have simulated this process.

The patient’s hands are clasped firmly around the armrests as the dentist drills away the caries-stricken sections of the tooth. Once the drilling is over, most toothache sufferers can begin to relax. All the doctor now has to do is to slightly etch the cavity, apply an adhesive film, and fill it with a special type of plastic.

The plastic is soft at first, so that the doctor can easily press it into the cavity. It only solidifies afterwards under the light of a small lamp. However, the material tends to shrink slightly as it hardens, occasionally producing tension that can cause tiny gaps to form between the plastic filling and the tooth. Bits of food can get caught in these gaps and lead to more caries. Manufacturers of filling materials therefore offer a variety of plastics to choose from. But which filling is best suited to which shape of cavity?

This is where dentists have to draw on their experience. “Until now, it has not been possible to establish a theoretical model of the hardening process. The tension occurring in the material always depends on the shape of the cavity, and can vary widely by a factor of up to ten, particularly at the edges,” says Dr.-Ing. Christof Koplin, research assistant at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg. Measurements do not help either, as tension can only be measured selectively. Its precise course of development has never yet been observed.

A new method of simulation now enables tension in dental fillings to be accurately predicted, helping doctors to choose the least tension-prone plastic for each shape of cavity. Dentists can now draw on the results of the IWM to select the best material, and manufacturers can use the simulations to optimize their products. “We theoretically subdivide the dental filling into thousands of small parcels and calculate how each element affects its neighbor.

Experimental parameters are incorporated in the individual elements. We started our laboratory tests by using a standard geometry to find out how each material reacts to the stresses that occur when the volume shrinks, and how the flow capability of the material changes as it hardens,” explains Koplin. The IWM researchers have now successfully simulated the development of tension in dental fillings for various cavity shapes and materials, and more will follow.

Christof Koplin | alfa
Further information:
http://www.iwm.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/09/ResearchNews092008Topic3.jsp

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>