Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The best cut for machining

24.10.2013
A new and verified computer model improves the machining of nanoscale semiconductor parts for the electronics industry

Brittle materials such as silicon and ceramics are used extensively in the semiconductor industry to make component parts. Materials cut to have a mirror-like surface yield the best performance, but the precision required is difficult to achieve at such a tiny scale.


Conventional machine cutting of brittle materials can result in chipping and fracturing (left), but vibration-assisted machining with the correct depth of cut produces a chip-free, mirror-like surface (right).
© 2013 A*STAR Singapore Institute of Manufacturing Technology

Xinquan Zhang at A*STAR’s Singapore Institute of Manufacturing Technology, along with co-workers at the same institute and the National University of Singapore, has developed a computer model that allows engineers to predict the best way of cutting different materials using vibration-assisted machining (VAM)1. This technique periodically interrupts the cutting process via the application of small-amplitude and high-frequency displacement to the cutting tool.

“Many researchers have observed that using VAM instead of conventional cutting techniques allows them to make cleaner, fracture-free cuts to most brittle materials,” explains Zhang. “Because no theory or model exists to explain or predict this phenomenon, we decided to investigate.”

At the nanoscale, brittle materials exhibit a certain degree of plasticity. Each material has a particular depth of cut that allows clean shearing to occur without chipping or fracturing on, or beneath, its surface. This point, known as the critical undeformed chip thickness, is directly correlated with material properties and machining conditions.

Zhang and his team studied the behavior of different brittle materials cut with VAM, during which two modes of cutting occur. In the ductile mode, plastic deformation caused by cutting is followed by elastic rebound and recovery of the material structure between vibrations. The brittle mode, on the other hand, removes material by uncontrolled crack propagation. Making a clean cut during ductile mode — before the brittle mode dominates — is therefore desirable.

The researchers modeled the energy consumption of each mode in terms of material removal as the vibrating tool moved, taking into account tool geometry, material properties and the cutting speed.

“By examining energy consumption and material deformation we were able to describe the mechanics when VAM moved from the ductile to the brittle mode,” explains Zhang. “We then established a model to predict [the] critical undeformed chip thicknesses by finding the transition point between the two modes.”

By examining energy consumption and material deformation we were able to describe the mechanics when VAM moved from the ductile to the brittle mode,” explains Zhang. “We then established a model to predict [the] critical undeformed chip thicknesses by finding the transition point between the two modes.”

Through a series of experiments, the team verified that the model accurately predicts the critical undeformed chip thicknesses of single-crystal silicon when cut at various VAM speeds.

“Our model will help engineers to select optimized machining parameters depending on their desired material,” says Zhang. “Advantages could include higher productivity, lower costs, and improved product quality for semiconductor parts and other nanoscale technologies.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Associated links
http://www.research.a-star.edu.sg/research/6777
Journal information
Zhang, X., Arif, M., Liu, K., Kumar, A. S. & Rahman, M. A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. International Journal of Machine Tools and Manufacture 69, 57–66 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6777
http://www.researchsea.com

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>