Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corrosion and Wear Protection: Economical, Environmentally Friendly and Extremely Fast

31.05.2017

Components are protected against corrosion and wear through hard chrome plating, thermal spraying, laser material deposition or other deposition welding techniques. However, there are downsides to these processes – for example, as of September 2017, chromium(VI) coatings will require authorization. Researchers from the Fraunhofer Institute for Laser Technology ILT in Aachen as well as the RWTH Aachen University have now developed an ultra-high-speed laser material deposition process, known by its German acronym EHLA, to eliminate these drawbacks. On May 30, 2017, the research team was awarded the Joseph von Fraunhofer Prize for this work.

Protecting components against corrosion and wear is no simple matter. Standard processes such as hard chrome plating, thermal spraying and deposition welding have drawbacks. Up to now, laser material deposition has been used only in specific applications. With ultra-high-speed laser material deposition, or EHLA, researchers at Fraunhofer ILT in Aachen and RWTH Aachen University have developed and patented an alternative process to overcome shortcomings of the conventional processes in the areas of coating technology and repair.


With EHLA, metal protective layers can be applied with ultra-high-speed.

Fraunhofer ILT, Aachen, Germany / Volker Lannert.


Ultra-high-speed laser material deposition (EHLA): protection against wear and corrosion, repair and additive manufacturing - all with only one system technology.

Fraunhofer ILT, Aachen, Germany.

“We can now use EHLA to apply thin layers in the range of a tenth of a millimeter over large surfaces within a short time, while being resource-efficient and economical,” Dr. Andres Gasser, group manager at Fraunhofer ILT, summarizes.

An Alternative to Hard Chrome Plating

One of the most common processes for the application of corrosion and wear protective coatings is hard chrome plating. However, this consumes a lot of energy. In addition, chromium(VI) harms the environment – which is why, from September 2017, it can only be used with specific authorization. EHLA now offers companies an economical alternative.

Its chemical-free application makes the process very environmentally friendly. The resulting layer is metallurgically bonded to the base material and, unlike hard chrome layers, does not delaminate. While hard chrome plating layers have pores and cracks, layers produced using EHLA are non-porous and, thus, offer more efficient long-term protection.

More Efficient Use of Resources than Thermal Spraying

Thermal spraying, too, has disadvantages. This process consumes a lot of material and gas because only about half of the material used ends up coating the component surface. In addition, the resulting layers bond only weakly to the substrate. Due to their porosity, it is necessary to apply several layers, each roughly 25 to 50 micrometers thick, on top of each other.

In comparison, the new EHLA process uses about 90 percent of the material, making it far more resource efficient and economical. Not only are the individual layers non-porous, they also bond firmly to the substrate.

Faster and More Broadly Applicable than Deposition Welding Processes

Deposition welding processes are used to produce high-quality and firmly bonded coatings. With conventional processes such as tungsten inert gas (TIG) welding or plasma powder deposition, however, the layers of 2 to 3 mm are often far too thick and, as a result, too much material is used. Laser material deposition already allows for far thinner layers – between 0.5 and 1 millimeter, but is too slow for large components, which is why it has only been used for specific applications so far.

A further drawback of the process is that it requires a certain melt pool size in order to create a defect-free layer: the component is locally melted, while a powder nozzle directs a powdery additive into the melt pool. Dr. Gasser explains the key element of the new process: “With EHLA, the laser melts the powder particles while they are above the melt pool.” Since this means that drops of liquid material fall into the weld pool instead of solid powder particles, the layer becomes more homogenous. In addition, less base material needs to be melted: instead of up to a millimeter, now only a few micrometers suffice.

As a result, the component can be coated 100 to 250 times faster than with conventional laser material deposition, with minimal heating of the substrate. Thus, EHLA facilitates the coating of heat-sensitive components, which was impossible due to excessively high heat input up to now. Also, the new process can be used for completely new material combinations such as coatings on aluminum base alloy or cast iron.

In close cooperation with ACunity GmbH from Aachen, Germany, which is a spin-off of the Fraunhofer ILT, the Dutch company Hornet Laser Cladding B.V. will deliver the first EHLA system to China in the near future. It shall be used for research purposes and industrial applications at the Advanced Manufacture Technology Center of China Academy of Machinery Science & Technology CAMTC in Beijing.

At this year’s LASER World of PHOTONICS from June 26 to 29 in Munich, Germany, our experts will be presenting the EHLA process (stand A2.431).

Honored with the Joseph von Fraunhofer Prize 2017

At the Fraunhofer General Assembly Meeting, held on May 30 in Dresden, Germany, Dr. Andres Gasser, Thomas Schopphoven and Gerhard Maria Backes received the Joseph von Fraunhofer prize, which carries a reward of 50,000 euros, in recognition of their work.

Contact

Dipl.-Ing. Thomas Schopphoven
Laser Material Deposition Group
Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
Telephone +49 241 8906-8107
thomas.schopphoven@ilt.fraunhofer.de

Dr.-Ing. Andres Gasser
Group Manager Laser Material Deposition
Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
Telephone +49 241 8906-209
andres.gasser@ilt.fraunhofer.de

Dipl.-Ing. Gerhard Backes
Chair for Digital Additive Production DAP
RWTH Aachen University, Aachen, Germany
Telephone +49 241 8906-410
gerhard.backes@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en
http://www.rwth-aachen.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Corrosion Extremely Fraunhofer-Institut ILT Laser Lasertechnik coating

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>