Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonded rotor blade joints: Improved test method reduces scale-up risks

25.02.2011
After a five year term, the EU funded UpWind research project is now drawing to a close. One aim of this project was to develop a more comprehensive test for bond lines used in the manufacturing process for rotor blades.

Prior to the production of prototypes, adhesive tests have hitherto only been undertaken on coupon specimens. Researchers at Fraunhofer IWES, together with industrial partners, have now developed a subcomponent test as an intermediate step. This provides additional understanding of material behavior on a structure-relevant scale. This more comprehensive approach reduces uncertainty for scale-up process to subcomponent design stage.

The aim of the UpWind project was to develop accurate, verified tools and component concepts for very large wind turbines (8-10 MW), both onshore and offshore. Ever longer rotor blades are being used for multi-megawatt wind turbines. They usually consist of two half-shells, which are bonded together with special adhesive. The loads that act on the bonded joint and the requirement for a service life of 20 years put extreme demands on the bond line. The latter can have a thickness of about 10 millimeters and a length of about 60 meters.

More realistic load distribution
Up until now ca. 15 centimeter long coupon specimens were certified prior to the prototype stage. However, due to production and geometry effects, the load distribution on these specimens differed considerably from the actual load distribution on the rotor blade prototypes.
As part of the EU funded UpWind project, scientists from the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) investigated whether a so-called beam test can meet these requirements. These activities were

enhanced by parallel industry projects done with Henkel. A “beam in bending” test methodology that was has been developed in collaboration with Henkel was the starting point of the improvement.

“Knowledge of the physical properties of our products under in-service conditions is essential for successful applications,” explains Felix Kleiner, Manager of Adhesive Engineering at Henkel AG & Co. KGaA. “The new test method allows economic evaluation of different adhesives and design variations”. The base model that was used for this was an I-beam - a model which takes into account two bonded seams between spar cap - shear web - spar cap.

Enhanced understanding of material behavior
These tests provided information about the mechanisms of material fatigue and material failure. “In order to investigate the mechanical behavior of the adhesive in a relatively large adhesive volume, the beams were designed to have a critical section”, says Florian Sayer, Team Leader of "Component and Material Testing" at Fraunhofer IWES. This enhanced understanding of material behavior is being utilized in a follow-up research project to scrutinise further options for bond line structuring that will be summed up in a detailed catalogue. Moreover, a simplified numerical beam model for simulating material fatigue at the bonded seam will be developed. The beam test method that was validated in the project is available for interested industrial parties.

Uwe Krengel | Fraunhofer-Institut
Further information:
http://www.upwind.eu
http://www.iwes.fraunhofer.de

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>