Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomistic Insights into Electrocatalysis

27.03.2018

Latest findings published in Nature Catalysis

Electrocatalysts are important for many industrial processes as they enhance the conversion of electrical energy into chemical energy and thus help to store excessive electrical energy generated by renewable energy resources. Hydrogen is expected to be crucial for the storage of chemical energy. Hydrogen can be produced by water splitting: the division of water into oxygen and hydrogen by means of an electric current passing through the water. To accelerate water splitting, electrocatalysts are used. The better the electrocatalyst, the faster the process. Scientists from the Max-Planck-Institut für Eisenforschung, the Helmholtz Institute Erlangen-Nürnberg for Renewable Energies, the Friedrich-Alexander University Erlangen-Nürnberg and Ruhr-Universität Bochum found out that the topmost atomic layers of electrocatalysts contain chemical species, which determine their efficiency and reveal how they can be influenced to speed-up water splitting. This is a further step towards a sustainable hydrogen economy. They now published their recent findings in Nature Catalysis.


Dr. Olga Kasian analyzed the surface of iridium oxides with the scanning flow cell, a technique that was mainly developed by Prof. Karl Mayrhofer during his stay at the MPIE.

Max-Planck-Institut für Eisenforschung GmbH

To develop more efficient electrocatalysts for energy conversion the relationship between the surface composition of the electrode and its electrochemical behaviour has to be understood in operando. Up to now the bottleneck of efficient water splitting lies in the oxygen evolution reaction (OER) – one of the two reactions during water splitting.

Currently, the OER leads to a detrimental change of the electrode’s surface composition, thereby influencing the electrocatalytic properties. “Iridium is known as an efficient electrocatalyst with a high activity and long-term stability during OER. I used photoelectron spectroscopy and scanning flow cell techniques to analyse the surface of iridium oxides. This is how we gained insight into the electronic properties of the surface oxides and the electrocatalytic activity and stability”, explains Dr. Olga Kasian, Alexander von Humboldt fellow at the MPIE.

In a further step, the scientists used atom probe tomography to analyse the chemical species at the surface of iridium oxides to understand the observed enhancement of activity during the first stages of OER and the subsequent deterioration. This near-atomic-scale 3D characterization showed the distribution of individual species within the surface oxides.

”Our measurements show that oxide clusters localize mainly at specific microstructural features, such as grain boundaries. With lasting OER the water molecules and hydroxyl groups, which we could only confidently identify thanks to the use of isotopic labelling, concentrate within oxide islands and remain only at the surface of the electrochemical oxide. The evolution of these oxide islands cause a deterioration in activity”, explains Dr. Baptiste Gault, leader of the group Atom Probe Tomography at the MPIE.

The team of material scientists and chemists comes to the conclusion that the activity and stability of iridium during OER are influenced by compositional changes of surface species. They demonstrated how the coupling of both electrochemical techniques and atomic-scale tomography improves the understanding of complex relationships between surface structure, -state and –function in electrocatalysis through which water splitting thus sustainable energy storage can be made more efficient in the future.

Publication:
T. Li, O. Kasian, S. Cherevko, S. Zhang, S. Geiger, C. Scheu, P. Felfer, D. Raabe, B. Gault, K. J. J. Mayrhofer: Atomic-scale insights into surface species of electrocatalysts in three dimensions. DOI: 10.1038/s41929-018-0043-3

Weitere Informationen:

https://www.mpie.de/3778019/nature-catalysis-publication

Yasmin Ahmed Salem M.A. | Max-Planck-Institut für Eisenforschung GmbH
Further information:
http://www.mpie.de

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>