Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability

02.12.2019

Perovskite nanocrystals hold promise for improving a wide variety of optoelectronic devices - from lasers to light emitting diodes (LEDs) - but problems with their durability still limit the material's broad commercial use.

Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the material's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.


This illustration shows how the two layers of plastic and silica work together to protect the perovskite material.

Credit: Georgia Tech

In a study published Nov. 29 in the journal Science Advances, the research team describes a multistep process to produce encased perovskite nanocrystals that exhibit strong resistance to degradation in moist environments.

"Perovskite nanocrystals are highly susceptible to degradation, particularly when they come into contact with water," said Zhiqun Lin, a professor in the Georgia Tech School of Materials Science and Engineering.

"This dual-shelled system offers two layers of protection while allowing each nanocrystal to remain a distinct and separate unit, achieving the maximum amount of surface area and other physical characteristics of the perovskite needed for optimizing optoelectronic applications."

The term perovskite refers to the crystal structure of the material, which is generally composed of three parts: two cations of different sizes and an anion in between. For decades, researchers have tested substituting various chemicals into the structure to achieve unique characteristics. In particular, perovskites containing halide compounds such as bromide and iodine can act as light absorbers and emitters.

For this study, which was supported by the Air Force Office of Scientific Research, the National Science Foundation, the Defense Threat Reduction Agency, and the Department of Energy, Lin's group worked with one of the most common halide configurations, which is formed from methylammonium, lead, and bromide.

Their process involves first forming star-shaped plastic molecules that could serve as "nanoreactors" by growing 21 polymer arms on a simple sugar molecule. Then, once precursor chemicals for the silica and perovskite nanocrystals are loaded onto the plastic molecule, several stages of chemical reactions produce the final system.

After the star-shaped plastic has played its role as a nanoreactor, the star-shaped components remain permanently attached, almost like hair, to the silica, which encases the perovskite. The hairs then serve as the first layer of protection, repelling water and preventing the nanocrystals from clumping together. The subsequent layer of silica adds further protection should any water get past the water-repelling plastic hair.

"Synthesis and applications of perovskite nanocrystals have been a rapidly evolving research field over the past five years," said Yanjie He, a coauthor of the paper and former graduate student at Georgia Tech.

"Our strategy, based on a judiciously designed star-shaped plastic as a nanoreactor, enables unprecedented control in the crafting of high-quality perovskite nanocrystals with complex architecture, which is inaccessible in conventional approaches."

To test the material, the researchers coated glass substrates with a thin film of the encapsulated perovskites and conducted several stress tests, including immersing the entire sample in deionized water. By shining ultraviolet light upon the sample, they found that the photoluminescent properties of the perovskites never diminished during a 30-minute test. For comparison, the researchers also immersed unencapsulated perovskites in water and watched as their photoluminescence vanished in a matter of seconds.

Lin said the new method unlocks the possibility of tuning the surface characteristics of the dual-shelled nanocrystal to enhance its performance in a greater range of applications. The process of fabricating the new perovskite nanocrystals from the star-shaped plastic was also unique in that it employed low-boiling point solvents with low toxicity. Future research may center on developing different perovskite nanocrystal systems, including all-inorganic perovskites, double perovskites, and doped perovskites.

"We envision that this type of perovskite nanocrystal will prove very useful for creating durable optoelectronic devices for bioimaging, biosensors, photonic sensors, and radiation detection, as well as next generation LEDs, lasers, and scintillators," Lin said. "This is because these hairy perovskite nanocrystals carry unique advantages, including high defect tolerance, narrower emission bands, and high scintillation efficiency."

###

This research was supported by the National Science Foundation (NSF) under grant Nos. CMMI 1727313, CMMI 1914713, CBET 1803495, Air Force Office of Scientific Research under grant No. FA9550-19-1-0317, the Defense Threat Reduction Agency under grant No. HDTRA1-18-1-0004, and the U.S. Department of Energy under grant Nos. DE-SC0018611 and DE-FG02-90ER46604. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsoring organizations.

CITATION: Yanjie He, Young Jun Yoon, Yeu Wei Harn, Gill V. Biesold-McGee, Shuang Liang, Chun Hao Lin, Vladimir V. Tsukruk, Naresh Thadhani, Zhitao Kang, and Zhiqun Lin, "Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities" (Science Advances, November 2019). http://dx.doi.org/10.1126/sciadv.aax4424

Josh Brown | EurekAlert!

More articles from Materials Sciences:

nachricht First field measurements of laughing gas isotopes
05.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Making higher-energy light to fight cancer
05.12.2019 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Swiss space telescope CHEOPS: Rocket launch set for 17 December 2019

05.12.2019 | Physics and Astronomy

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>