Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3D Printing: New high-Tech Device for Bremen Material Scientists


The scientific location Bremen is happy to work together for outstanding innovation – as is the case in material research. The MAPEX Center for Material and Processes at the University of Bremen has established a strong network. This consortium has now been granted 2.2 million euros by the German Research Foundation (DFG) to build a device for 3D laser metal deposition for high throughput development of new alloys and composite materials.

Laser metal deposition (LMD) is an additive, powder-based production process for metals. This type of 3D printings allows for large construction parts and very delicate structures to be created at comparably high construction rates. With the help of LMD, structures can even be built on existing parts and surfaces.

High-tech at the University of Bremen: With laser metal deposition, metal parts and structures are produced by 3D printing.

Anika Langebeck, Bias GmbH

The welding process can be used for production, coating, repairing, and modifying of 3D constructions. Amongst other applications, the process is used within the aerospace industry and increasingly in the automotive and engineering sectors. It is of great significance for Bremen’s industry.

New Materials, New Properties

The new LMD device offers material scientists entirely new possibilities for the researching of new metal materials: Several powder conveyors are employed at the same time in order to use varying metals in one working step and to quickly manufacture many differing samples.

It is in this way that completely new alloys with previously unattained properties are efficiently developed and manufactured or composite materials are printed.

The high-tech device, which is packed with the most innovative measuring technology, will deliver data that facilitates scientific understanding of the basic processes during powder mixing and conveying, the actual laser metal deposition, and in-situ heat treatment.

The Bremen scientists’ aim is the usage and evaluation of the new possibilities offered by this 3D printing technology for quick, expedient material development.

Top-Level Research in Bremen

“We deliver excellent top-level research in many areas – also in material research, as this success shows. The new, cutting-edge device will further material research in Bremen a great deal and will promote collaborations across the institution borders – which is in line with our cooperative university,” states the president of the University of Bremen, Bernd Scholz-Reiter, happily.

MAPEX spokesperson Professor Kurosch Rezwan also confirms this: “The research into new material and technologies in material processing is a significant stepping stone on the path to a more material and energy efficient future. Taking the quantity of processes and data that we now illustrate into consideration, interdisciplinary communication is becoming continually more important.”

Since 2014, the MAPEX Center for Materials and Processes has been a supporter of the collaboration between various university faculties and non-university research institutes. Alongside the planned core facility for material analysis, which will be built in the coming years, new research possibilities and cooperations within the MAPEX group will become possible thanks to the DFG funded high-tech LMD device at the University of Bremen. Researchers from various University of Bremen faculties, the Leibniz Institute for Material Engineering (IWT), and the BIAS – Bremen Institute for Applied Bean Technology, will use the device.

Scientific Communication Will Profit

“It will further strengthen the scientific communication and collaboration at this location and will promote Bremen in the important research field of additive production,” expects Professor Frank Vollersten, BIAS institute head. He has several years’ experience in the field of laser material processing and the group will build on his know-how in the area of LMD processes.

It is planned that the device be integrated in the joint fundamental research of the collaborative research center (CRC) 1232 “From colored states to evolutionary structural materials”. This CRC at the University of Bremen is developing a high throughput method for the discovery of entirely new and sustainable alloy concepts. “This large device is the ideal tool for flexible and particularly quick production of samples and will open new opportunities for CRC 1232,” enthuses Professor Lutz Mädler, CRC 1232 spokesperson and an IWT director.

Participating Scientists:

Seven MAPEX scientists from four different institutes were involved in the successful proposal submitted in the frame of the DFG Major Instrumentation Initiative “Laser Metal Deposition for High Throughput Analyses and Additive 3D Productions of Complex Alloys and Composite Materials” (Laser-Auftragschweißen für Hochdurchsatzuntersuchungen und additive 3D-Fertigungen komplexer Legierungen und Verbundwerkstoffe):

Prof. Dr.-Ing. Lucio Colombi Ciacchi, HMI, University of Bremen
Prof. Dr. phil. nat. Rolf Drechsler, Computer Architecture Group, University of Bremen
Dr.-Ing. Nils Ellendt, CRC 1232 “From colored states to evolutionary structural materials” managing director
Prof. Dr.-Ing. habil. Lutz Mädler, Mechanical Process Engineering, IWT
Prof. Dr.-Ing. Vasily Ploshikhin, ISEMP, University of Bremen
Dr.-Ing. Matthias Steinbacher, Materials Engineering/Metals, IWT
Prof. Dr.-Ing. Frank Vollertsen, Welding Technology and Related Processes, BIAS

Further Information: (in German only)


Dr. Hanna Lührs, MAPEX Center for Materials and Processes
University of Bremen
Phone: +49 421 218-64580

Carolin Haller, IWT Leibniz Institute for Material Engineering
Phone: +49 421 218-51374

Christine Steffens, BIAS – Bremer Institut für angewandte Strahltechnik GmbH
Phone: +49 421 218-58130

Kai Uwe Bohn | idw - Informationsdienst Wissenschaft

Further reports about: 3D Printing BIAS CRC Laser construction material processing powder

More articles from Materials Sciences:

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding Metal Ion Release from Hip Implants
17.02.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>