Phthalates in PVC floors taken up by the body in infants

Phthalates are a group of chemical compounds that occur in construction materials and a great number of common consumer goods such as toys, cleaning solvents, packaging, etc. Phthalates are suspected of disrupting hormones and may be related to several chronic diseases in children, like asthma and allergies, as shown in earlier studies.

Flooring materials using softened PVC contain phthalates and have previously been shown to be a significant source of phthalates in indoor dust. This new study was designed to investigate whether flooring materials using PVC and other housing-related factors, together with other individual factors, can be tied to the uptake of phthalates by infants.

Urine samples were taken from 83 randomly selected children between the ages of two and six months by the county council in Värmland in western Sweden. The prevalence of four types of phthalates in the urine was measured, and data were collected about flooring materials and the home, the family’s lifestyle, and individual factors for the infants. The levels of certain phthalates (MBzP, a BBzP metabolite) proved to be higher in the urine of babies that had PVC materials on their bedroom floor. The levels of another phthalate metabolite related to DEHP were lower in two-month-old children if they were exclusively breastfed, with no supplements.

Earlier studies from the current group have shown that PVC flooring can be tied to the occurrence of phthalates in indoor dust, and that exposure for BBzP in indoor dust could be associated with allergic conditions in children. These new data thus show that the uptake of phthalates in infants can be related to flooring materials using softened PVC in the home. It should be pointed out that both DEHP and BBzP are banned for use in toys for small children owing to health risks.

“With this study as a basis, we can establish that there are other sources that should be taken into consideration in regard to the uptake of banned chemicals and that we do not only ingest them in our food,” says Carl-Gustaf Bornehag, professor of public health at Karlstad University and leader of the study. The findings also show that phthalates can be taken up in different ways, both through food and probably through breathing and through the skin.

Contacts for more information:

Carl-Gustaf Bornehag, professor, project director of the SELMA study, Karlstad University and the Science Partner Technical Research Institute of Sweden. Mobile: +46 (0)70 5866565; e-mail carl-gustaf.bornehag@kau.se

Bo A Jönsson, professor, in charge of chemical urine analyses, Lund University. Tel: +46 (0)46 173186; e-mail bo_a.jonsson@med.lu.se

Fredrik Carlstedt, physician, Värmland County Council. Mobile: +46 (0)70 2599489. e-mail Fredrik.carlstedt@liv.se

Publication: Carlstedt, F., Jönsson, B.A., Bornehag, C.G. PVC flooring is related to human uptake of phthalates in infants. Indoor Air Accepted manuscript online: 7 MAY 2012 11:05AM EST | DOI: 10.1111/j.1600-0668.2012.00788

Media Contact

Carina Olsson idw

More Information:

http://www.vr.se

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors