Nanophysicists at the University of Münster developed a high-performance organic phototransistor

Phototransistors are important electronic building units enabling to capture light and convert it to electrical signal. For future applications such as foldable electronic devices, organic phototransistors (OPTs) attract a lot of attentions due to their attractive properties including flexibility, low cost, light weight, ease of large-area processing and precise molecular engineering.

So far the development of OPTs has still lagged behind that of inorganic or hybrid materials, mainly because the low mobility of most organic photoresponsive materials limits the efficiency of transporting and collecting charge carriers.

Researchers from the Physical Institute and Center for Nanotechnology (CeNTech) in Münster headed by Prof. Dr. Harald Fuchs, have now developed together with collogues from China a novel thin-film OPT arrays.

Their approach is based on a small-molecule – 2, 6-diphenylanthracene (DPA), which has a strong fluorescence anthracene as the semiconducting core and phenyl groups at 2 and 6 positions of anthracene to balance the mobility and optoelectronic properties.

The fabricated small-molecule OPT device shows high photosensitivity, photoresponsivity and detectivity. “The reported values are all superior to state-of-the-art OPTs and among the best results of all previously reported phototransistors to date.

At the same time, our DPA-based OPTs also show high stability in the air”, says Dr. Deyang Li. Dr. Saeed Amirjalayer adds: “By combining our experimental data with atomistic simulation, we are, in addition, able to explain the high performance of our device, which is important for a rational development of these devices.”

The WWU researchers believe that, therefore, DPA offers great opportunity towards high-performance OPTs for both fundamental research and practical applications such as sensor technology or data transfer.

The work was funded by the German Research Foundation (SFB 858 und TRR 61).

Prof. Dr. Harald Fuchs
Physikalisches Institut

Wilhelm-Klemm Str. 10
48149 Münster
Germany
Tel: Tel.: +49 (0)251 83-33621
Fax: Fax : +49 (0)251 83-33602
fuchsh@uni-muenster.de

Deyang Ji, Tao Li, Jie Liu, Saeed Amirjalayer, Mianzeng Zhong, Zhao-Yang Zhang, Xianhui Huang, Zhongming Wei, Huanli Dong, Wenping Hu and Harald Fuchs: Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nature Communications 10, Article number: 12 (2019). doi: 10.1038/s41467-018-07943-y.

Media Contact

Dr. Kathrin Kottke idw - Informationsdienst Wissenschaft

More Information:

https://www.uni-muenster.de/

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors