Novel and Effective Treatment for Soft Tissue Sarcoma in Children

Rhabdomyosarcoma is a highly malignant aggressive form of soft tissue cancer in children, the causes of which are currently unknown. Although the fibrous growths can be found all over the body they commonly develop around the head, neck, bladder and testes in young boys. The most common age for onset is between 1-5 years of age. The treatments used are usually chemotherapy using a combination of drugs, radiotherapy and surgery and although quite effective (66% success rate at present), the side affects commonly experienced by the young patients are very unpleasant and the whole process can prove to be very traumatic not only for the patient but for the families too. So there is a need for a better way of treating the disease.

At present the cocktail of drugs administered through the chemotherapy route are not selective to the cancer cells and so they also attack healthy cells. In order for the treatment to be effective without causing unnecessary tissue damage, researchers have been looking for ways to specifically target the cancer cells in order to deliver the therapeutic agent that will kill the tumour.

An unexpected link between rhabdomyosarcoma and a particular form of a disease known as myasthenia gravis was recently discovered by University scientists. Research was being carried out at the University of Oxford amongst women suffering from spontaneous miscarriages caused by an autoimmune response to their own foetus. It was then discovered that the mothers were producing antibodies against a molecule on the surface of the foetal cells which was the same as that present on the surface of the rhabdomyosarcoma cells. Scientists at the University of Würzburg then made molecules that were smaller fragments of the antibody but which would still have the same attraction for the rhabdomyosarcoma cells as for the original antibody. A gene that encodes the fragments was then transferred into a bacteria containing the DNA for a toxin. An immunotoxin was then produced containing the antibody fragment and the toxin together which is able to target the sarcoma cells using the antibody fragment and kill them with the toxin.

The immunotoxin has already been tested in a good model system and the positive results achieved have been able to show the therapeutic potential of the technique. The antibody fragment is also able to carry other toxins or even radioactive elements such as Yttrium for delivery to the site of a tumour.

Dr Richard Middleton, the project manager from Isis Innovation Ltd, the technology transfer company for the University of Oxford stated, “This is excellent science leading to an application which may be of real benefit to people in an area of currently unmet need”.

Media Contact

newswise

Weitere Informationen:

http://www.isis-innovation.com

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists solve big limitation of stratospheric balloon payloads

How do you cool a large telescope to absolute zero while flying it from a huge balloon at 130,000 feet? Nearly all photons emitted after the Big Bang are now…

Pumping a nanoparticle to lase at low power

A single nanoparticle can act like a laser at low power but still emit a sharp signal. Lasers are used in a range of everyday devices, harnessing the power of…

Ultrasensitive transistor for herbicide detection in water

A new polymer-based, solid-state transistor can more sensitively detect a weed killer in drinking water than existing hydrogel-based fluorescence sensor chips. The details were published in Chemistry-A European Journal. The…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close