Researchers find genetic clue to cancer relapse

Cancer researchers at Perth’s Telethon Institute for Child Health Research (TICHR) have developed a new test that can rapidly detect the loss of genes in cancer cells, paving the way for more targeted and effective treatments for patients.

Australian Cancer Technology (AustCancer, ASX:ACU) today announced that it has entered into a partnership agreement with the Institute to commercialise this novel technology and bring it to the market as quickly as possible.

Professor Ursula Kees, who heads the Children’s Leukaemia and Cancer Research Division at TICHR, said the development of a fast, simple gene test could significantly improve patient outcomes.

“Our research in a group of cancer patients has shown that those patients with cancer cells that have lost a specific tumour suppressor gene are at greater risk of relapse,” she said.

“If their doctors can determine the genetic makeup of the cancer at an early stage, then they will have a very important indicator of the type of treatment that will be most effective.”

“Current methods for testing the loss of genes in cancer cells are expensive and relatively slow. The new technology that we have developed is fast, simple and can be applied at low cost – in fact it uses standard equipment found in most diagnostic labs.”

Professor Kees said in studies on children with acute lymphoblastic leukaemia (ALL), which were published in the prestigious journal ’Blood’, her team had shown that this technology is effective in measuring the deletion of an important tumour suppressor gene. The studies also showed that the gene’s absence pointed to a 11-fold higher risk of relapse.

“Testing cancer cells to determine whether a gene is missing has always been considered very difficult because patient specimens always contain normal cells, and the genetic differences that we’re looking for are very subtle. This new technology can detect those very small differences.”

Paul Hopper, managing director of AustCancer said his company would be determining the most appropriate commercial model by which the test can be rapidly brought to the market.

“We believe that, as medical science’s understanding of the role of genes in cancer grows, an inexpensive, quick and routine gene test will become essential in the diagnosis of many types of cancer. The technology is patented and we have embarked on a research program with the Institute to expand its utility to other important cancer genes.”

Director of the Telethon Institute for Child Health Research, Professor Fiona Stanley, said the Institute was delighted to partner with AustCancer on this discovery because of their strong credentials in the field.

“It’s important that we make sure that the benefits of our research are seen by the patients as soon as possible. This partnership will ensure that we can now take this discovery to the next stage of development.”

PLEASE DIRECT ENQUIRIES TO:

Liz Chester
Media Liaison Manager
Telethon Institute for Child Health Research
Phone: +61 409 988 530

Paul Hopper
Managing Director
Australian Cancer Technology
Phone: +61 407 118 366 or +61 2 9252 6899

Mike Feehan
Monsoon Communications
Phone: +61 3 9620 3333

Media Contact

Monsoon Communications

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close