Thoughts translate to actions

Some 200,000 people live with partial or nearly total permanent paralysis in the United States, with spinal cord injuries adding 11,000 new cases each year. Most research aimed at recovering motor function has focused on repairing damaged nerve fibers, which has succeeded in restoring limited movement in animal experiments. But regenerating nerves and restoring complex motor behavior in humans are far more difficult, prompting researchers to explore alternatives to spinal cord rehabilitation.

One promising approach involves circumventing neuronal damage by establishing connections between healthy areas of the brain and virtual devices, called brain–machine interfaces (BMIs), programmed to transform neural impulses into signals that can control a robotic device. While experiments have shown that animals using these artificial actuators can learn to adjust their brain activity to move robot arms, many issues remain unresolved, including what type of brain signal would provide the most appropriate inputs to program these machines.

As they report in this paper, Miguel Nicolelis and colleagues have helped clarify some of the fundamental issues surrounding the programming and use of BMIs. Presenting results from a series of long-term studies in monkeys, they demonstrate that the same set of brain cells can control two distinct movements, the reaching and grasping of a robotic arm. This finding has important practical implications for spinal-cord patients–if different cells can perform the same functions, then surgeons have far more flexibility in how and where they can introduce electrodes or other functional enhancements into the brain. The researchers also show how monkeys learn to manipulate a robotic arm using a BMI. And they suggest how to compensate for delays and other limitations inherent in robotic devices to improve performance.

By charting the relationship between neural signals and motor movements, Nicolelis et al. demonstrate how BMIs can work with healthy neural areas to reconfigure the brain’s motor command neuronal elements and help restore intentional movement. These findings, they say, suggest that such artificial models of arm dynamics could one day be used to retrain the brain of a patient with paralysis, offering patients not only better control of prosthetic devices but the sense that these devices are truly an extension of themselves.

CONTACT:
Miguel Nicolelis
Duke University Medical Center
Durham, NC 27710
United States of America
919-684-4580
nicoleli@neuro.duke.edu

Media Contact

Barbara Cohen EurekAlert!

All news from this category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to the Homepage

Comments (0)

Write comment

Latest posts

German National HPC Centre provides resources to look for cracks in the standard model

Physicists have spent 20 years trying to more precisely measure the so-called “magnetic moment” of subatomic particles called muons. Findings published this week call into question long-standing assumptions of particle…

Designing better antibody drugs with artificial intelligence

Antibodies are not only produced by our immune cells to fight viruses and other pathogens in the body. For a few decades now, medicine has also been using antibodies produced…

New NASA visualization probes the light-bending dance of binary black holes

A pair of orbiting black holes millions of times the Sun’s mass perform a hypnotic pas de deux in a new NASA visualization. The movie traces how the black holes…

Partners & Sponsors