Nanostructures improve bone response to titanium implants

There are some alternatives to modulating the body's response after implant placement. Modifying the implant surface topography has been a successful path among the scientific community, with the primary goals of achieving faster bone contact to the implant surface and more predictable results after several years.

Today, during the 86th General Session of the International Association for Dental Research, convening here, a team of Swedish researchers is reporting the results of experiments that focused on structures, so-called 'nanostructures', one million times smaller than a Canadian one-dollar coin. The results demonstrated enhanced bone response to dental implants modified with such small structures as soon as 4 weeks after implant placement.

Modifying the size and distribution of the nanostructures at the implant surface may not only represent a faster and more reliable treatment for patients, but also may help in understanding the sequence of events at the body-implant interface and provide guidelines for the further development of osseointegrated implant surfaces.

Media Contact

Linda Hemphill EurekAlert!

More Information:

http://www.iadr.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors