Deadly dose: Rensselaer heparin expert helps uncover source of lethal contamination

Robert J. Linhardt, the Ann and John H. Broadbent Jr. '59 Senior Constellation Professor of Biocatalysis and Metabolic Engineering at Rensselaer, is part of an international team that recently announced it had uncovered the source of the deadly contamination. On April 23, the team led by researchers at the Massachusetts Institute of Technology (MIT), described the source in the journal Nature Biotechnology — a complex carbohydrate named oversulfated chondroitin sulfate, which has a structure so similar to heparin it was nearly undetectable to less advanced technology.

“Days after the deaths were first linked to heparin, we had the drugs in our hands from the FDA and our nuclear magnetic resonator (NMR) was set into motion to break down the structure of the drug and determine what could possibly be the source of the contamination,” Linhardt said. “Now that we know the most likely source of the contamination, we are developing much stronger monitoring systems to ensure that this type of contamination is detected before it reaches patients.”

Although extremely close in chemical structure to heparin, the contaminant caused severe allergic reaction in many patients who were receiving routine treatment for kidney dialysis, heart surgery, and other common medical issues. The researchers' extremely detailed structural analysis of the drug, using technology such as the NMR, was able to detect the minute differences between the contaminated drug and a normal dosage of heparin. And while Linhardt and others are developing more sophisticated detection systems, Linhardt also is helping lead the race for a safer, man-made alternative to the traditional biologic heparin. Biological heparin is currently developed by purifying the scrapings of pig and cow intestines.

“This contamination is unfortunately a sign that the way we currently manufacture heparin is simply unsafe,” he said. “Because we rely on animals, we open ourselves up for spreading prions and diseases like mad cow disease through these animals. And because most of the raw material is imported, we often can't be sure of exactly what we are getting.”

Linhardt is helping lead the global race to develop a synthetic alternative to heparin that could help eliminate the potential for contamination and adverse affects of biologic heparin. His lab developed the first fully synthetic heparin in amounts large enough for human dosage in 2005, and he continues to work to get the product further tested and commercialized.

“A synthetic heparin is built using sugars and enzymes found in the human body,” Linhardt said of his recipe for synthetic heparin. “So instead of taking pig intestines and trying to purify it over and over again to reduce it down to just heparin, we are building heparin from scratch with no foreign material present. This method ensures that we know exactly what is in the drug and have complete control over its ingredients.”

The research published in Nature Biotechnology was led by Ram Sasisekharan at MIT and involved a multidisciplinary and global team of researchers, including scientists and engineers from the FDA, Momenta Pharmaceuticals of Cambridge, Mass., and the Istituto di Ricerche Chimiche e Biochimiche of Milan, Italy.

Linhardt and his team of researchers at Rensselaer, which includes postdoctoral, graduate, and undergraduate students, used the sophisticated NMR and other technologies in the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS) to help uncover the source of the contamination.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

About the Rensselaer Center for Biotechnology and Interdisciplinary Studies

Ranked among the world's most advanced research facilities, the Rensselaer Center for Biotechnology and Interdisciplinary Studies provides a state-of-the-art platform for collaborative research. At the Center, faculty and students in diverse academic and research disciplines are crossing the divide between the life sciences and engineering to encourage discovery and innovation. Four biotechnology research constellations – biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology – engage a multidisciplinary mix of faculty and students to help create new technologies that will save and improve the lives of people around the world.

Media Contact

Gabrielle DeMarco EurekAlert!

More Information:

http://www.rpi.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors