Typhoid carriers: a Salmonella gene mutation?

p>
Salmonella enterica causes approximately 16 million cases of typhoid fever worldwide, killing around 500,000 per year. One in thirty of the survivors, however, become carriers, such as Typhoid Mary who caused several typhoid outbreaks in New York City at the beginning of the last century. In carriers the bacteria remain hidden inside cells and the gall bladder, causing new infections as they are shed from an apparently healthy host.

The factors that enable the bacteria to establish chronic infection were unclear. However, in a paper published this week in the Proceedings of the National Academy of Science, researchers at the Institute of Food Research in Norwich and the Karolinska Institute in Sweden found that the change of a single base pair in one Salmonella gene can determine if the bacteria cause short-term illness or a long-term carrier state. The authors stumbled upon the striking change in infectivity while investigating a mutant strain that produces persistent infection in mice.

Tracing the mutation to the genome, the scientists found it caused a single base change in the gene coding for the enzyme polynucleotide phosphorylase (PNPase). This enzyme normally decreases the production of virulence factors by breaking down the messenger RNA essential for the translation of the genetic code into the Salmonella virulence factors. The mutant enzyme is less active, allowing greater production of virulence factors and, therefore, persistent infection.

Dr Jay Hinton of the Institute of Food Research said, “This is a new mechanism for controlling the expression of Salmonella virulence factors, and it’s the first time that this type of gene regulation has been linked with the carrier state of typhoid.”

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Researchers shrink camera to the size of a salt grain

Micro-sized cameras have great potential to spot problems in the human body and enable sensing for super-small robots, but past approaches captured fuzzy, distorted images with limited fields of view….

World-first product will be a lifesaving traffic stopper

Game-changing technology to design traffic lights that absorb kinetic energy, stopping them from crumpling when hit by a vehicle, will prevent thousands of fatalities and injuries each year and make…

Scientists capture electron transfer image in electrocatalysis process

The involvement between electron transfer (ET) and catalytic reaction at electrocatalyst surface makes electrochemical process challenging to understand and control. How to experimentally determine ET process occurring at nanoscale is…

Partners & Sponsors