Tropical Depression Haishen moves away from Fananu

NASA's Aqua satellite captured this visible-light image of Haishen in the Pacific Ocean on April 4, 2015, when it was a tropical storm. Credit: NASA Goddard's MODIS Rapid Response Team

Before Haishen weakened from tropical storm status, NASA's Aqua satellite passed overhead and captured a visible image showing the system over Micronesia.

On April 4 at 03:00 UTC, the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible image of Tropical Storm Haishen over the Fananu and the Federated States of Micronesia.

The MODIS image showed the center of the storm northwest of Fananu.

By 1500 UTC (11 a.m. EDT) on April 6, Haishen had weakened to a tropical depression with maximum sustained winds near 25 knots (28.7 mph/46.3 kph).

The depression was moving to the north-northwest at 7 knots (8 mph/12.9 kph), further away from Micronesia.

It was centered near 9.6 north latitude and 150.3 east longitude, about 149 nautical miles (171 miles/276 km) northwest of Chuuk.

Infrared imagery showed that there was little strong convection left in the system and most of it was being pushed away from the center by strong southwesterly wind shear.

That wind shear continues to weaken the tropical depression and the Joint Typhoon Warning Center expects Haishen to dissipate in a day or two.

Media Contact

Rob Gutro EurekAlert!

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

3D tumor model for retinoblastoma research highlighting tumor-environment interactions.

Retinoblastoma: Eye-Catching Investigation into Retinal Tumor Cells

A research team from the Medical Faculty of the University of Duisburg-Essen and the University Hospital Essen has developed a new cell culture model that can be used to better…

Private wells serving as emergency water sources to enhance disaster resilience during crises.

A Job Well Done: How Hiroshima’s Groundwater Strategy Helped Manage Floods

Groundwater and multilevel cooperation in recovery efforts mitigated water crisis after flooding. Converting Disasters into Opportunities Society is often vulnerable to disasters, but how humans manage during and after can…

DNA origami structures controlling biological membranes for targeted drug delivery

Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells

Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…