After Landslides, Soil Carbon Storage Recovers Rapidly

Because most forested areas are in mountainous regions, 40% of U.S. forests are in landslide hazard areas. Thus, the interaction between soil development and mass wasting is critical to understanding the dynamics of terrestrial carbon storage.

In a study funded by the U.C. Kearney Foundation for Soil Science, scientists at the University of California, Riverside, have investigated carbon and nitrogen accumulation in soils formed on debris flows in a coniferous forest in southern California. Soil formation was studied using a space-for-time substitution, in which debris flows of various ages were used to approximate soil formation over time. Results from the study were published in the September-October issue of the Soil Science Society of America Journal.

Soil pits were excavated on 10 debris flows of varying ages and the soils were sampled by horizon for carbon and nitrogen analysis. The bulk density of the soil and volume of rock fragments were also measured, which was necessary to calculate the carbon and nitrogen storage per unit of land area. Expressing storage on a land area basis makes it possible to relate spatial data on forest cover and age structure to carbon and nitrogen cycling in soils.

Strong relationships were observed between soil age and carbon and nitrogen storage, especially in the organic horizons. Extrapolation of the carbon accumulation trend suggests that the carbon storage at the site will approach values typical for the ecosystem type in as little as 500 years.

“At this site we see that the recurrence interval between debris flows is less than the time required for stabilization of the soil carbon and nitrogen pools, effectively holding the soils within the narrow window where carbon and nitrogen accumulation are most rapid” said Judith Turk, co-author of the study. “However, the net impact of such debris flows on the carbon cycle depends significantly on the decomposition rate of organic matter in soils that they bury.”

Ongoing research at the University of California, Riverside, aims to determine the influence of debris flows on carbon storage in the buried soils. Collaborators at the University of Alberta, led by Sylvie Quideau, Prof. of Soil Biogeochemistry, are studying the changes in microbial communities with soil age in the debris flows.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/abstract/73/5/1504.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC

Media Contact

Sara Uttech Newswise Science News

More Information:

http://www.soils.org

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors