Norwich scientists part of EU project to fight drug-resistant ’superbugs’

The John Innes Centre (JIC)Norwich, has today announced its key role in an EU-funded consortium to develop novel antibiotics in the war against drug-resistant superbugs. The ’CombiGyrase’ consortium of 7 laboratories from Germany, Italy, Spain, Switzerland and the UK will receive 1.56 million Euros over three years, with 228,000 Euros (£150,000) going to the JIC.

“There is a lot of concern about the rise of drug-resistant bacteria, so called superbugs, such as MRSA”, says Professor Tony Maxwell (Head of the Biological Chemistry Department at JIC and leader of the Norwich team) “at a time when big pharmaceutical companies have reduced antibiotic research. There is a pressing need for small companies, supported by high-quality academic research, to fill this gap. This European consortium can take advantage of the expertise that exists across Europe to research and develop new drugs that are urgently needed”.

The project will use novel combinatorial methods to develop new antibacterial agents that target the enzyme DNA gyrase. Gyrase is a bacterial enzyme that has already been exploited as a target for other very successful antibiotics. Combinatorial biosynthesis is a novel technology that uses genetic manipulation to improve the chemical properties and pharmacological activity of naturally occurring compounds.

The Norwich team, which includes 5 scientists from the JIC, has a key role in the consortium, testing new compounds and working out how they interact with the target, DNA gyrase.

“This consortium is an ideal platform to expand the diversity of potent gyrase inhibitors found in nature by methods of combinatorial biosynthesis“, says Professor Lutz Heide, the co-ordinator of the CombiGyrase project.

Media Contact

Ray Mathias alfa

More Information:

http://www.jic.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors