Norwich scientists part of EU project to fight drug-resistant ’superbugs’

The John Innes Centre (JIC)Norwich, has today announced its key role in an EU-funded consortium to develop novel antibiotics in the war against drug-resistant superbugs. The ’CombiGyrase’ consortium of 7 laboratories from Germany, Italy, Spain, Switzerland and the UK will receive 1.56 million Euros over three years, with 228,000 Euros (£150,000) going to the JIC.

“There is a lot of concern about the rise of drug-resistant bacteria, so called superbugs, such as MRSA”, says Professor Tony Maxwell (Head of the Biological Chemistry Department at JIC and leader of the Norwich team) “at a time when big pharmaceutical companies have reduced antibiotic research. There is a pressing need for small companies, supported by high-quality academic research, to fill this gap. This European consortium can take advantage of the expertise that exists across Europe to research and develop new drugs that are urgently needed”.

The project will use novel combinatorial methods to develop new antibacterial agents that target the enzyme DNA gyrase. Gyrase is a bacterial enzyme that has already been exploited as a target for other very successful antibiotics. Combinatorial biosynthesis is a novel technology that uses genetic manipulation to improve the chemical properties and pharmacological activity of naturally occurring compounds.

The Norwich team, which includes 5 scientists from the JIC, has a key role in the consortium, testing new compounds and working out how they interact with the target, DNA gyrase.

“This consortium is an ideal platform to expand the diversity of potent gyrase inhibitors found in nature by methods of combinatorial biosynthesis“, says Professor Lutz Heide, the co-ordinator of the CombiGyrase project.

Media Contact

Ray Mathias alfa

Weitere Informationen:

http://www.jic.ac.uk

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Customized programming of human stem cells

Induced pluripotent stem cells (iPS) have the potential to convert into a wide variety of cell types and tissues. However, the “recipes” for this conversion are often complicated and difficult…

Electronic skin has a strong future stretching ahead

A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time. Electronic skin, or e-skin, may play an important role…

Fast-moving gas flowing away from young star caused by icy comet vaporisation

A unique stage of planetary system evolution has been imaged by astronomers, showing fast-moving carbon monoxide gas flowing away from a star system over 400 light years away, a discovery…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close