Bio-imaging: Probing for deeper diagnostics

Molecular probes that selectively latch onto tumor cells and emit imaging signals can detect cancer without invasive procedures. These tools, however, have specific deficiencies. Fluorescent probes that image individual molecules have poor depth penetration into cells.

The alternative, magnetic resonance imaging (MRI) probes, resolves cells in three dimensions but with low resolution. Bin Liu at the A*STAR Institute of Materials Research and Engineering, Singapore, and co-workers have now solved this problem with a biocompatible polymer that combines MRI and fluorescence imaging in a single molecular probe1.

According to Liu, designing a probe with joint imaging capabilities is challenging because fluorescent and MRI-active materials display different biological behaviors. Substances that emit fluorescent light are often lethal to cells at low concentrations. In contrast, to produce sufficient imaging signals, MRI probes require substantial injections of substances called chelated gadolinium (Gd(III)) agents.

Liu and her team devised a strategy to overcome the dissimilar dosage requirements with polymers known as ‘hyperbranched’ polyglycerols (HPGs). These materials have a tree-like structure of repeating molecular units that radiate from a core. HPGs also have a promising biomedical track record because of their water solubility and low cytotoxicity. Liu and co-workers envisaged using HPGs to encapsulate fluorescent organic molecules as their core. Then, they reasoned, high densities of Gd(III) agents could attach to the numerous hydroxyl attachment points present on the HPG surfaces.

After synthesizing a fluorescent molecule consisting of fused aromatic rings, the researchers attached eight of them to a rigid polysilicate cage, known as polyhedral oligomeric silsesquioxane. With the stable core in place, they initiated growth and outward branching of the HPG into a spherical protective shell — a tricky procedure, notes Liu, as it required carefully controlling the reagents and polymerization conditions. The new nanospherical probe converted over 50% of light photons into fluorescent emissions, a remarkably high quantum yield arising from the water-repellent nature of the dense HPG shell.

Next, the team attached Gd(III) agents to the probe’s exterior and tested its dual detection capabilities inside MCF-7 breast cancer cells. Both MRI and fluorescence imaging revealed that the nanoprobe was well integrated into cell structures with no obvious changes to cell viability. The probe demonstrated high photostability when exposed to laser light — a key attribute for fluorescence imaging — and had promising magnetic properties that compared favorably with commercial MRI probes. “Combining both imaging techniques in one probe simultaneously boosts resolution and penetration depth,” says Liu. “The different signals can also validate each other to improve detection accuracy.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Liu, J., Li, K., Geng, J., Zhou, L., Chandrasekharan, P., Yang, C.-T. & Liu, B. Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging. Polymer Chemistry 4, 1517–1524 (2013). | article

Associated links
http://www.research.a-star.edu.sg/research/6707

Media Contact

A*STAR Research Research asia research news

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors