Radiation dose level affects size of lesions seen on chest CT images

The study, conducted at Massachusetts General Hospital in Boston, used a 3D image processing tool to quantitatively measure the volume of the lymph nodes and lung nodules.

“We found that lymph node volumes were estimated at 30% lower in five cases and 10% higher in 15 cases of low dose compared to higher dose images,” said Dr. Beth Vettiyil, a lead author of the study. The study found that the calculated volume of lung nodules was 46% lower in nine cases and 34% higher in 10 cases on lower dose as compared to high dose images.

“We were surprised that in both the lymph nodes and lung nodules there were cases in which the lower dose picked up lower lesion volumes as well as higher lesion volumes when compared to the higher dose scans,” said Dr. Vettiyil. “We think that increased image noise (graininess of the image) on the lower dose scans may have caused the lesion volumes to vary so significantly,” she said.

The goal of the study was to explore the possibility of using image processing tools to better delineate lesions at low radiation doses without missing any clinical information, noted Dr. Vettiyil. “The study indicates that radiologists can use these types of quantitative tools to supplement them in their measurements, but the use of such software measurements without the radiologist's clinical correlation might not be advisable at this stage,” said Dr. Vettiyil.

The study will be presented April 17 during the ARRS Annual Meeting in Washington, DC.

Media Contact

Samantha Schmidt EurekAlert!

More Information:

http://www.arrs.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors