Sound increases the efficiency of boiling

The acoustic field does this by efficiently removing vapor bubbles from the heated surface and suppressing the formation of an insulating vapor film.

As reported in the American Institute of Physics' (AIP) journal the Physics of Fluids, bubble removal was enhanced because the acoustic field induces capillary waves on the bubble, causing its contact line to contract and detach the bubble from the surface.

The mechanisms associated with these interactions were explored using three acoustic experiments: an air bubble on the underside of a horizontal surface, a single vapor bubble on the top side of a horizontal heated surface, and pool boiling from a horizontal heated surface.

The researchers were able to isolate and identify the dominant forces involved in these acoustically forced motions by measuring the capillary waves induced on the bubbles, bubble motion, and heat transfer during boiling.

Title: Acoustically Enhanced Boiling Heat Transfer
Journal: Physics of Fluids
Authors: Zachary Douglas (1), Thomas R. Boziuk (1), Marc K. Smith (1), and Ari Glezer (1)

(1) Georgia Institute of Technology

Media Contact

Charles E. Blue EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors