In Space and on Earth, Why Build It, When a Robot Can Build It for You?

That’s just one thing researchers in Hod Lipson’s Creative Machines Lab envision with their latest robot prototype. It can autonomously traverse and manipulate a 3-D truss structure, using specially designed gears and joints to assemble and disassemble the structure as it climbs. Lipson is an associate professor of mechanical and aerospace engineering, and of computing and information science at Cornell University.

The robot’s design is detailed in a paper accepted by IEEE Robotics and Automation, to appear soon online and in print. Its co-authors include former visiting scientist Franz Nigl, former visiting Ph.D. student Shuguang Li, and undergraduate Jeremy Blum.

“What gets me most excited is this idea of safety,” said Blum, a student researcher working on the project. Having a robot able to climb and reconfigure building structures, even just to deliver materials, would be a step toward making construction zones safer for humans, he said.

The researchers also point to space-exploration applications. Instead of sending astronauts out on a dangerous spacewalk at the International Space Station, a robot could be deployed to repair a damaged truss.

The robot is equipped with an onboard power system, as well as reflectivity sensors so it can identify where it is on the structure. This allows it to maneuver accurately without explicit commands, Blum added.

Lipson said he envisions transforming the built environment with the help of these kinds of technologies. Instead of making buildings out of concrete or other non-recyclable materials, components designed specifically for robots could be used to build or reconfigure structures more efficiently – for example, after an earthquake, or if an outdated building needed to be torn down in favor of something better.

“Right now, we are very bad at recycling construction materials,” Lipson said. “We are exploring a smarter way to allow the assembly, disassembly and reconfiguration of structures.”

The project is part of a National Science Foundation Emerging Frontiers in Research and Innovation grant jointly awarded to Lipson at Cornell, Daniela Rus of the Massachusetts Institute of Technology, Mark Yim of the University of Pennsylvania, and Eric Klavins of the University of Washington.

NOTE: Contact the Press Relations Office for information about Cornell's TV and radio studios.

Media Contact

John Carberry Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors