Tracking Carbonic Acid

Until now, it has stubbornly defied all attempts at detection: according to current textbooks, gas-phase carbonic acid should not exist at all, because it immediately decomposes into water and carbon dioxide –making it detectible only as a trace component.

A team led by Hinrich Grothe at the TU Vienna and Thomas Loerting at the University of Innsburck has now finally found proof to the contrary. As the Austrian researchers report in the journal Angewandte Chemei, they were able to isolate carbonic acid and gather spectroscopic data.

Carbonated beverages contain carbon dioxide. They also contain trace amounts of a molecule that was long thought to be too unstable to exist: carbonic acid (H2CO3). It is now known that carbonic acid is indeed present in drinks, though at very, very low concentrations. Until recently, the molecule has resisted all attempts at isolation and direct detection. However, a few scientists have been able to produce carbonic acid in the solid state. It is also assumed to be present in cirrus clouds in Earth’s atmosphere and in space.

The Austrian researchers have now demonstrated that carbonic acid can exist in the gas phase and that it is stable at temperatures up to –30 °C. For these experiments, solid carbonic acid was formed by means of acid-base reactions at very low temperatures and then warmed to –30 °C. The evaporating molecules were trapped in a matrix of the noble gas argon and then immediately cooled again. This resulted in a kind of frozen “image” of the gas-phase carbonic acid, which the researchers were able to study by infrared spectrometry.

The spectra showed that gas-phase carbonic acid exists in three different forms. The scientists found two monomers that differ in their conformation—the spatial arrangement of their atoms—as well as a dimer made from two molecules bound through hydrogen bonds.

The resulting detailed spectrometric data are of great interest to astronomers, because they could make it easier to detect gas-phase carbonic acid in space, where it is thought to be present in the tails of comets and on Mars.

Author: Hinrich Grothe, Technische Universität Wien (Austria), http://info.tuwien.ac.at/inorganic/staff/pers%5Fgrothe%5Fe.php

Title: Spectroscopic Observation of Matrix-Isolated Carbonic Acid

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201004729

Media Contact

Hinrich Grothe Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors