Potential antifouling substance can cause paler fish

Research at the University of Gothenburg, Sweden, has shown that high concentrations of this substance can have an impact on the marine environment.

Since TBT was banned worldwide in 2008, the search for environmentally friendly antifouling paints has reached fever pitch. One of the substances on trial is medetomidine, a sedative used in veterinary medicine that has also been shown to prevent barnacle larvae from attaching themselves to vessels.

Being trialled
Medetomidine is currently being trialled under the EU's Biocidal Products Directive as an active agent in antifouling paint. In her thesis, researcher Anna Lennquist from the Department of Zoology at the University of Gothenburg has examined the effects of low concentrations of medetomidine on fish.
Makes fish paler
The thesis covers studies where rainbow trout, Atlantic cod, turbot, three-spined stickleback and Atlantic salmon were treated with medetomidine for periods of 1-54 days. The research shows that the most obvious effect is that medetomidine makes fish paler as it affects the skin cells that contain dark pigment.
Important for camouflage
“The pigment cells don't seem to be damaged, even during long-term treatment with medetomidine, but their sensitivity is affected slightly,” says Lennquist. “While the paleness itself isn't harmful, functioning pigmentation is very important for a fish's camouflage, communication and UV protection.”
Effects the liver
Another effect noted in several of the studies is that a detoxifying enzyme in the fish's liver is affected. “In studies of isolated liver fractions, we have been able to establish that the effect of the enzyme is undermined by medetomidine,” says Lennquist. “This could mean that a fish's ability to break down environmental toxins is impaired by the substance.”
Less active
Other effects noted after treatment with medetomidine are that the fish are slightly less active and have less of an appetite. Blood sugar content and liver size are also thought to be affected.
Must be monitored
“The intention of the thesis was to identify some of the ways that fish could be affected if we do use medetomidine in antifouling paint. We can state that the leakage of medetomidine should be carefully monitored so that harmful concentrations do not find their way into the marine environment. At the same time, the substance has not proved to have any effect in other important areas, such as growth, oxidative stress, cell toxicity and gene expression.”
The thesis Studies of fish responses to the antifoulant medetomidine
was successfully defended on 23 April. Download the thesis at:
http://gupea.ub.gu.se/handle/2077/22081
Contact:
Anna Lennquist, Department of Zoology, University of Gothenburg
+46 70 572 4750
+46 31 786 3683
anna.lennquist@zool.gu.se

Media Contact

Helena Aaberg idw

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors