This idea doesn't stink: New tech cuts industrial odors, pollutants

Dr. Praveen Kolar, assistant professor of biological and agricultural engineering at NC State, has developed an inexpensive treatment process that significantly mitigates odors from poultry rendering operations. Rendering facilities take animal byproducts (e.g., skin, bones, feathers) and process them into useful products such as fertilizer. However, the rendering process produces extremely foul odors.

These emissions are not currently regulated by the government, but the smell can be extremely disruptive to a facility's community. The industry currently uses chemical “scrubbers” to remove odor-causing agents, but this technique is not very effective, Kolar says. Furthermore, some of the odor-causing compounds are aldehydes, which can combine with other atmospheric compounds to form ozone – triggering asthma attacks and causing other adverse respiratory health effects.

Kolar, working with his co-author Dr. James Kastner at the University of Georgia, has designed an effective filtration system that takes advantage of catalytic oxidation to remove these odor-causing pollutants. Specifically, the researchers use ozone and specially-designed catalysts to break down the odor-causing compounds. This process takes place at room temperature, so there are no energy costs, and results in only two byproducts: carbon dioxide and pure water.

The researchers developed the catalysts by coating structures made of activated carbon with a nanoscale film made of cobalt or nickel oxides, Kolar says. “We used activated carbon because its porous structure gives it an extremely large surface area,” Kolar explains, “meaning that there is more area that can be exposed to the odorous agents.” The cobalt and nickel oxide nanofilms make excellent catalysts, Kolar explains, “because they increase the rate of the chemical reaction between the odor-causing compounds and the ozone, making the process more efficient. They are also metals that are both readily available and relatively inexpensive.”

Kolar says his next goal is to apply this research to industrial hog farms. “This technology could be applied to swine operations to address odors and ammonia emissions,” Kolar says. “My next step is to try to pursue this research on a large scale.”

The research, “Room-Temperature Oxidation of Propanal Using Catalysts Synthesized By Electrochemical Deposition,” is published in the August issue of Transactions of the American Society of Agricultural and Biological Engineers.

Media Contact

Matt Shipman EurekAlert!

More Information:

http://www.ncsu.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors