Intensified ice sheet movements do not affect rising sea levels

Over the long term, however, this process is interrupted as meltwater drains away via broad channels, as a result of which ice movement decreases once again. Ultimately, this is not a cause of accelerated sea level rise. These are the findings presented by researchers from Utrecht University in the 4 July issue of the scientific journal Science.

Scientists from around the world are closely monitoring the Greenland ice sheet, as accelerated glacial melting is believed to cause rising sea level. The theory is that increased volumes of meltwater accelerate the movement of ice to warmer low-lying areas and, consequently, even more intensified glacial melting. Utrecht University researchers, however, insist that this is not how the process actually works in the long term.

GPS measurements

Since the early 1990s, Utrecht University scientists have tracked the movement of the West Greenland ice sheet using GPS measurements. During warmer weather, the ice appears to move – over the course of a few days – as much as four times faster, because the meltwater acts as lubricant between the ice and the subsoil. As a result, the ice sheet moves more rapidly to lower and warmer areas.

It seems, however, that over time larger channels form in the ice that are able to drain off the increased volumes of meltwater. As a result, the water pressure on the ground once again decreases, as does the tempo of the ice movement. Over the long term, therefore, the feedback mechanism between the glacial melting and ice sheet movement contributes little to rising sea levels.

Media Contact

Peter van der Wilt alfa

More Information:

http://www.uu.nl

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors