Is there anybody out there?

A mathematical model produced by Prof Andrew Watson suggests that the odds of finding new life on other Earth-like planets are low, given the time it has taken for beings such as humans to evolve and the remaining life span of Earth.

Structurally complex and intelligent life evolved late on Earth and it has already been suggested that this process might be governed by a small number of very difficult evolutionary steps.

Prof Watson, from the School of Environmental Sciences, takes this idea further by looking at the probability of each of these critical steps occurring in relation to the life span of Earth, giving an improved mathematical model for the evolution of intelligent life.

According to Prof Watson a limit to evolution is the habitability of Earth, and any other Earth-like planets, which will end as the sun brightens. Solar models predict that the brightness of the sun is increasing, while temperature models suggest that because of this the future life span of Earth will be ‘only’ about another billion years, a short time compared to the four billion years since life first appeared on the planet.

“The Earth’s biosphere is now in its old age and this has implications for our understanding of the likelihood of complex life and intelligence arising on any given planet,” said Prof Watson.

“At present, Earth is the only example we have of a planet with life. If we learned the planet would be habitable for a set period and that we had evolved early in this period, then even with a sample of one, we’d suspect that evolution from simple to complex and intelligent life was quite likely to occur. By contrast, we now believe that we evolved late in the habitable period, and this suggests that our evolution is rather unlikely. In fact, the timing of events is consistent with it being very rare indeed.”

Prof Watson suggests the number of evolutionary steps needed to create intelligent life, in the case of humans, is four. These probably include the emergence of single-celled bacteria, complex cells, specialized cells allowing complex life forms, and intelligent life with an established language.

“Complex life is separated from the simplest life forms by several very unlikely steps and therefore will be much less common. Intelligence is one step further, so it is much less common still,” said Prof Watson.

His model, published in the journal Astrobiology, suggests an upper limit for the probability of each step occurring is 10 per cent or less, so the chances of intelligent life emerging is low – less than 0.01 per cent over four billion years.

Each step is independent of the other and can only take place after the previous steps in the sequence have occurred. They tend to be evenly spaced through Earth’s history and this is consistent with some of the major transitions identified in the evolution of life on Earth.

Media Contact

Press Office alfa

More Information:

http://www.uea.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors