Bodily Breakdown Explained: How Cell Differentiation Patterns Suppress Somatic Evolution

The failure of normal cell differentiation patterns may explain cancer and senescent decline with aging, say researchers at the University of Arizona, the Santa Fe Institute, the University of Pennsylvania, and the Wistar Institute.

Darwinian natural selection and evolution is usually studied in populations of organisms, but it also applies to cellular populations; this is called “somatic” evolution. Such somatic evolution tends to reduce cooperation among cells, thus threatening the integrity of the organism.

In this study the authors proposed that a well-known pattern of ongoing cell differentiation in the mature tissues of animals functions to suppress somatic evolution, which is essential to the origin and sustainability of multicellular organisms.

The team, lead by Dr. John Pepper, tested this hypothesis using a computer simulation of cell population dynamics and evolution. The results were consistent with the hypothesis, suggesting that familiar patterns of ongoing cell differentiation were crucial to the evolution of multicellular animals, and remain crucial as a bodily defense against cancer.

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors