Global signaling study suggests cancer link to protein promiscuity

Haphazard activation of secondary signaling pathways may fuel cancer’s genesis


When found at abnormally high concentrations, two proteins implicated in many human cancers have the potential to spur indiscriminate biochemical signaling inside cells, chemists at Harvard University have found. Their finding may expand scientists’ current understanding of oncogenesis — that cancer arises when an oncoprotein becomes overactive, ramping up the biochemical pathways that it normally activates — suggesting that an important additional mechanism could be the inappropriate activation of numerous secondary pathways.

“Our data offer a new way to think about cancer, adding to the current paradigm,” says Gavin MacBeath, an assistant professor of chemistry and chemical biology in Harvard’s Faculty of Arts and Sciences and co-author of a paper published in the journal Nature. “We present the hypothesis that an important component of oncogenesis is the ability of proteins to turn on alternative, secondary signaling pathways when overexpressed, rather than simply upregulating primary pathways.”

MacBeath and colleagues studied the four human ErbB receptors, which set in motion widely studied cellular processes including cell migration, adhesion, growth and death. These receptors span the cell membrane; the external portion binds free growth factors, creating biochemical signals propagated inside the cell.

Each ErbB receptor has multiple intracellular binding sites where proteins can dock, but MacBeath’s group found that only two of the four ErbB proteins, known as EGFR and ErbB2, become dramatically more “promiscuous” — able to recruit and activate a large number of different signaling proteins — when present at high concentrations.

“These two promiscuous ErbB proteins are known to be overactive in many human cancers, suggesting that their ability to turn on rampant signaling may contribute to their high oncogenic potential,” MacBeath says. “This newfound link may also offer alternative strategies for therapeutic intervention. Many of today’s cancer pharmaceuticals work by targeting individual receptors such as EGFR and ErbB2. Our work suggests that new drugs could target critical secondary pathways that are inappropriately activated by promiscuous proteins.”

The researchers studied interactions between signaling proteins and the ErbB receptors using a protein microarray technique developed by MacBeath in 2000, when he was a research fellow in Harvard’s Bauer Center for Genomic Research. This method can rapidly and simultaneously assess the strength of interactions among tens of thousands of proteins genome-wide. The current research analyzed the interactions between 159 proteins and 33 binding sites on the four ErbB receptors. The scientists looked not only at whether a given protein-receptor pair interacted, but also how strongly.

Media Contact

Steve Bradt EurekAlert!

More Information:

http://www.harvard.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors