Menstrual cramps may alter brain structure

Primary dysmenorrhea (PDM), or menstrual cramps, is the most common gynecological disorder in women of childbearing age. Lower abdominal pain starts with the onset of menstrual flow and this ongoing pain stimulus can cause alterations throughout the nervous system. In a study scheduled for publication in the September issue of PAIN, researchers report abnormal changes in the structure of the brain in PDM patients, whether or not they are in fact experiencing pain.

Lead investigator, Professor Jen-Chuen Hsieh, MD, PhD, Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, commented, “Our results demonstrated that abnormal GM [gray matter] changes were present in PDM patients even in absence of pain. This shows that not only sustained pain but also cyclic occurring menstrual pain can result in longer-lasting central changes. Although the functional consequences remain to be established, these results indicate that the adolescent brain is vulnerable to menstrual pain. Longitudinal studies are needed to probe hormonal interaction, fast-changing adaptation (intra-menstrual cycle) and whether such changes are reversible or not.”

32 PDM patients and 32 age- and menstrual-cycle-matched controls participated in the study. MRI scans of each subject were obtained when the PDM patients were not experiencing pain, and maps of gray matter (GM) were created. Both the total GM volume and the GM volume of specific brain areas were determined for both PDM patients and controls.

In these anatomical maps, significant GM volume changes were observed in the PDM patients. Abnormal decreases were found in regions involved in pain transmission, higher level sensory processing, and affect regulation while increases were found in regions involved in pain modulation and in regulation of endocrine function.

The article is “Brain morphological changes associated with cyclic menstrual pain” by Cheng-Hao Tu, David M. Niddam, Hsiang-Tai Chao, Li-Fen Chen, Yong-Sheng Chen, Yu-Te Wu, Tzu-Chen Yeh, Jiing-Feng Lirng, and Jen-Chuen Hsieh. It appears in PAIN, Volume 150, Issue 3 (September 2010) published by Elsevier. DOI: 10.1016/j.pain.2010.05.026

Media Contact

Christine Rullo EurekAlert!

More Information:

http://www.elsevier.com

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors