Researchers create a conveyer belt for magnetic flux vortices in superconductors

If blown up in size, it would not have a chance in the car factory, but the microscopic conveyer belt built by Simon Bending’s team in the Department of Physics at the University of Bath and collaborators in Japan and the USA, could just be the next big thing for improving devices relying on the elusive properties of superconductors (Nature Materials, Advanced Online Publication March 12 2006). It’s not your standard rubber band on cylinders though – it moves in an erratic way, a quick jolt to the left, a smooth slide to the right. Who would want to be on such a thing?

Tiny swirls of electric currents, it seems. These so-called vortices are the closest things to ‘hurricanes’ for the superconducting researcher and engineer, and no less threatening. That’s because the zero resistance to current flow in even the best superconductors breaks down once vortices enter and start to move around. Their motion can also lead to unpredictable ‘noise’ if it takes place near the most sensitive regions of superconducting devices. Bending has now shown that it is possible to move vortices around inside a superconductor almost at will using his shaky conveyer belt. In this way they can either be removed entirely or at least left where they cause the least harm.

The asymmetry in its movement is the key to success, since it ensures that the vortices all move in one direction, even though the belt itself moves back and forth. The reason behind this is that the vortices can only follow along during the smooth slides to the right, and not during the jolts in the other direction. The conveyer belt thus acts in some sense as a rectifier, just like the diodes known from electronics.

The mind-boggling part is now that the conveyer belt is assembled out of a line of vortices itself, created and controlled by a time-varying magnetic field. As the researchers show, this way “bad” vortices can be completely removed out of targeted regions inside the superconductor, and the vortices induced to create the conveyer belt can be readily removed from the sample afterwards if need be.

Using this trick, superconducting devices, such as filters for telecommunications or ultra-sensitive magnetic field probes, could be improved by removing vortices – naturally caused by the earth’s magnetic field or man-made disturbances – from regions critical to device operation.

Bending’s team consisted of fellow researcher David Cole, and theoretical collaborators Sergey Savel’ev and Franco Nori from RIKEN (Japan) and the Universities of Michigan and Loughborough, as well as scientists from the Universities of Tokyo and Manchester.

Media Contact

Prof. Simon Bending alfa

More Information:

http://www.bath.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors