Breakthrough Computer Chip Lithography Method Developed at RIT

Evanescent wave lithography enables optical imaging to smallest-ever level


A new computer chip lithography method under development at Rochester Institute of Technology has led to imaging capabilities beyond that previously thought possible.

Leading a team of engineering students, Bruce Smith, RIT professor of microelectronic engineering and director of the Center for Nanolithography Research in the Kate Gleason College of Engineering, developed a method—known as evanescent wave lithography, or EWL—capable of optically imaging the smallest-ever semiconductor device geometry. Yongfa Fan, a doctoral student in RIT’s microsystems engineering Ph.D. program, accomplished imaging rendered to 26 nanometers —a size previously possible only via extreme ultraviolet wavelength, Smith says. By capturing images that are beyond the limits of classical physics, the breakthrough has allowed resolution to smaller than one-twentieth the wavelength of visible light, he adds.

The development comes at least five years sooner than anticipated, using the International Technology Roadmap for Semiconductors (http://public.itrs.net) as a guide, Smith says. The roadmap, created by a consortium of industry groups, government organizations, universities, manufacturers and suppliers, assesses semiconductor technology requirements to ensure advancements in the performance of integrated circuits to meet future needs.

“Immersion lithography has pushed the limits of optical imaging,” Smith says. “Evanescent wave lithography continues to extend this reach well into the future. The results are very exciting as images can be formed that are not supposed to exist.”

Evanescent wave lithography is an “enabling technology” permitting better understanding of how building blocks are created for future microelectronic and nanotechnology devices—the technology that consumers will use over the next five to 10 years, Smith explains.

Smith will present research at Microlithography 2006, a symposium sponsored by the International Society for Optical Engineering, on Feb. 21, in San Jose, Calif.

Media Contact

Michael Saffran EurekAlert!

More Information:

http://www.rit.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Economies take off with new airports

A global study by an SUTD researcher in collaboration with scientists from Japan explores the economic benefits of airport investment in emerging economies using nighttime satellite imagery. Be it for…

CAR T–cell immunotherapy targets

Pan-cancer analysis uncovers a new class of promising CAR T–cell immunotherapy targets. Scientists at St. Jude Children’s Research Hospital found 156 potential CAR targets across the brain and solid tumors,…

Stony coral tissue loss disease

… is shifting the ecological balance of Caribbean reefs. The outbreak of a deadly disease called stony coral tissue loss disease is destroying susceptible species of coral in the Caribbean…

Partners & Sponsors