Yale scientists confirm how crystals form

A team of researchers at Yale University is the first to devise a way to predict the microstructure of crystals as they form in materials, according to a report in the September issue of Applied Physics Letters.


Although there are theoretical models that predict grain size and ways to monitor the growth of individual crystals, this new method makes it possible to estimate grain size and therefore the properties of materials that are dependant on microstructure.

Researchers in many fields including materials science, geology, physical chemistry and biochemistry will now be able to tailor material properties that are sensitive to microstructure.

According to senior author Ainissa G. Ramirez, assistant professor of mechanical engineering, the Yale team monitored real-time images taken at two-second intervals while they heated crystallizing samples of nickel-titanium within a transmission electron microscope.

They directly determined the rate of crystal assembly (nucleation), and the rate that the crystals grew, by measuring the number of crystals and their change in size with time. Their results agree with the conventional Johnson-Mehl-Avrami-Kolmogorov method which only gives an overall crystallization rate, with the nucleation and growth rates coupled.

The novel contribution of this work is that the nucleation and growth rates are measured independently during crystallization and can be used to infer the grain size after crystallization is complete.

“We used the mathematics of crystallization in a new way,” said Ramirez. “We found that our measured grain sizes and the mathematical predictions agreed over a broad range of temperatures. This method allows researchers to now explore the connection between structure and properties of different materials.”

Media Contact

Janet Rettig Emanuel EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors