Star eats companion

In the scenario proposed by the astrophysicists, the gas from the companion star is channeled along the magnetic field lines until it slams into the pulsar magnetic poles. This gas, heated to extreme temperatures, produces high-energy photons. These photons, emitted periodically at the pulsar rotation frequency, are detected by the INTEGRAL satellite. Additional observations by NASA’s Rossi X-ray Timing Explorer show that during the cannibalization of the companion star, the pulsar spins faster and faster. The star’s matter, attracted by the very strong pulsar gravitational field, supplies the energy needed to accelerate the pulsar rotation.

This binary pulsar, known as IGR J00291+5934, was discovered thanks to the INTEGRAL’s sensitive detectors, during a routine scan of the Milky Way on 2004, December 2. Follow-up observations with the Rossi X-ray Timing Explorer satellite, designed to study rapid time variations, fund the pulsar period to be very fast, with a revolution every 1.67 milliseconds. The low mass companion star was founded to be approximately 40 times the Jupiter mass with an orbital period around 2.5 hours.

This fast-spinning pulsar is the first discovered by INTEGRAL and the fastest of a six members family. These observations back up the hypothesis that fast-spinning isolated pulsars are the consequence of this absorption process.

Media Contact

Célie Simeray alfa

More Information:

http://www.cea.fr

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors