Plasma doughnut currents made hollow, leading to greater efficiency for fusion

Computer simulation of the sequence of events in the reconnection process. Shown are contours of constant pressure at different times. As the current starts to become negative, the reconnection process begins and moves the center rapidly to the edge, effectively clamping the current in the center at zero

Doughnuts of plasma can be coaxed into configurations with hollow current rings, providing practical advantages over conventional “filled doughnut” shapes. Simulations suggest they will allow faster turn-on and greater efficiency of future nuclear fusion power plants.

Toroidal tokamaks, doughnut-shaped experimental fusion reactors, use a complex system of magnetic fields to hold a plasma together. Electrical currents flowing in the plasma itself are essential for making the internal magnetic fields needed for confinement. Plasma doughnuts normally carry large electrical currents throughout their volume but researchers expected the direction of the current could be changed back and forth.

However, in recent experiments at the Joint European Torus (JET) and JT-60U tokamaks in England and Japan, researchers tried to reverse the current and found, to their surprise, that the current doughnut became hollow.

Now computer simulations conducted by researchers at the DOE’s Princeton Plasma Physics Laboratory (PPPL) using supercomputers at the National Energy Research Supercomputer Center have explained this phenomenon. Instead of the electric current reversing direction, the plasma experiences magnetic reconnection (see Highlight 4) and the core becomes stabilized with zero current. As soon as a current tries to reverse in the center, it is pulled into the outer ring. (See images.) This new understanding should allow a more practical design of compact next-generation fusion experiments.

Contacts
Joshua Breslau, PPPL, 609-243-2677, jbreslau@pppl.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors