Relocating LEDs from silicon to copper enhances efficiency

The new copper substrate enabled the GaN crystals to release some of the internal stresses generated when they originally formed. This relaxation helped minimize the so-called “quantum confined stark effect,” a vexing problem for LEDs that reduces their efficiency.

In comparison with LEDs on silicon substrates, the light output of LEDs on copper was enhanced by 122 percent. The relocation of the LEDs produced no obvious deterioration in the crystals' light-emitting region, known as multiple quantum wells.

The researchers attributed the improvements in efficiency to the removal of the absorptive substrate; the insertion of a metal reflector between the LEDs' structure and the copper submount; the elimination of electrode shading, which also reduces efficiency; and the rough surface of the exposed buffer layer, which improves crystal orientation on the substrate. The results are reported in a paper accepted for publication in the American Institute of Physics' journal Applied Physics Letters.

TITLE: “Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes”
JOURNAL: Applied Physics Letters (apl.aip.org)
AUTHORS: Tufu Chen (1), Yunqian Wang (1), Peng Xiang (1), Ruihon Luo (1), Minggang Liu (1), Weimin Yang (1), Yuan Ren (1), Zhiyuan He (1), Yibin Yang (1), Weijie Chen (1), Xiaorong Zhang (1), Zhisheng Wu (1), Yang Liu (1), and Bijun Zhang (1)

(1) Sun Yat-sen University, Guangzhou, China

Media Contact

Charles E. Blue EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors